What is the Wave Function for a Particle in One Dimension in Dirac Formalism?

ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,097
Reaction score
1,384
Misplaced Homework Thread
What is ##<x|P|x'>##? (for particle in 1d, and ##\hbar = 1##)?\begin{align*}
<x|P|x'> &= \int dp' <x|P|p'><p'|x'> \\
&= \int dp' \ p' <x|p'> <p'|x'> \\
&= \int dp' \ p' \frac{1}{\sqrt{2\pi}} e^{ip'x} \frac{1}{\sqrt{2\pi}} e^{-ip'x'} \\
&= \frac{1}{2\pi} \int dp' \ p' e^{ip'(x-x')}
\end{align*}
 
Physics news on Phys.org
ergospherical said:
What is ##<x|P|x'>##? (for particle in 1d, and ##\hbar = 1##)?\begin{align*}
<x|P|x'> &= \int dp' <x|P|p'><p'|x'> \\
&= \int dp' \ p' <x|p'> <p'|x'> \\
&= \int dp' \ p' \frac{1}{\sqrt{2\pi}} e^{ip'x} \frac{1}{\sqrt{2\pi}} e^{-ip'x'} \\
&= \frac{1}{2\pi} \int dp' \ p' e^{ip'(x-x')}
\end{align*}
I'm not sure what the question is? So far so good. Now integrate by parts.

-Dan
 
  • Like
Likes Demystifier
it's supposed to evaluate to \begin{align*}
-i \frac{\partial}{\partial x} \delta(x-x')
\end{align*}but even integrating by parts I'm not sure how to get this
 
ergospherical said:
What is ##<x|P|x'>##? (for particle in 1d, and ##\hbar = 1##)?\begin{align*}
<x|P|x'> &= \int dp' <x|P|p'><p'|x'> \\
&= \int dp' \ p' <x|p'> <p'|x'> \\
&= \int dp' \ p' \frac{1}{\sqrt{2\pi}} e^{ip'x} \frac{1}{\sqrt{2\pi}} e^{-ip'x'} \\
&= \frac{1}{2\pi} \int dp' \ p' e^{ip'(x-x')}
\end{align*}
From this you get
$$\langle x|\hat{P}|x' \rangle=\frac{1}{2 \pi} (-\mathrm{i} \partial_x) \int_{\mathbb{R}} \mathrm{d} p' \exp[\mathrm{i} p' (x-x')]=-\mathrm{i} \partial_x \delta(x-x').$$
 
  • Like
  • Care
Likes topsquark, malawi_glenn and ergospherical
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...

Similar threads

Back
Top