What is the Wave Function for a Particle in One Dimension in Dirac Formalism?

Click For Summary
SUMMARY

The discussion focuses on the evaluation of the matrix element #### for a particle in one dimension using Dirac formalism, specifically with ##\hbar = 1##. The integral representation involves momentum eigenstates and leads to the expression ## = -i \frac{\partial}{\partial x} \delta(x-x')##. Participants clarify the integration process, emphasizing the use of integration by parts to derive the final result. The mathematical steps are rigorously outlined, confirming the relationship between position and momentum operators in quantum mechanics.

PREREQUISITES
  • Understanding of Dirac notation and quantum mechanics
  • Familiarity with the concept of delta functions in distributions
  • Knowledge of integration techniques, particularly integration by parts
  • Basic grasp of Fourier transforms and their applications in quantum physics
NEXT STEPS
  • Study the derivation of the momentum operator in quantum mechanics
  • Learn about the properties and applications of the Dirac delta function
  • Explore the implications of the position-momentum uncertainty principle
  • Investigate the role of Fourier transforms in quantum state representations
USEFUL FOR

Quantum physicists, graduate students in physics, and researchers focusing on quantum mechanics and operator theory will benefit from this discussion.

ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,100
Reaction score
1,387
Misplaced Homework Thread
What is ##<x|P|x'>##? (for particle in 1d, and ##\hbar = 1##)?\begin{align*}
<x|P|x'> &= \int dp' <x|P|p'><p'|x'> \\
&= \int dp' \ p' <x|p'> <p'|x'> \\
&= \int dp' \ p' \frac{1}{\sqrt{2\pi}} e^{ip'x} \frac{1}{\sqrt{2\pi}} e^{-ip'x'} \\
&= \frac{1}{2\pi} \int dp' \ p' e^{ip'(x-x')}
\end{align*}
 
Physics news on Phys.org
ergospherical said:
What is ##<x|P|x'>##? (for particle in 1d, and ##\hbar = 1##)?\begin{align*}
<x|P|x'> &= \int dp' <x|P|p'><p'|x'> \\
&= \int dp' \ p' <x|p'> <p'|x'> \\
&= \int dp' \ p' \frac{1}{\sqrt{2\pi}} e^{ip'x} \frac{1}{\sqrt{2\pi}} e^{-ip'x'} \\
&= \frac{1}{2\pi} \int dp' \ p' e^{ip'(x-x')}
\end{align*}
I'm not sure what the question is? So far so good. Now integrate by parts.

-Dan
 
  • Like
Likes   Reactions: Demystifier
it's supposed to evaluate to \begin{align*}
-i \frac{\partial}{\partial x} \delta(x-x')
\end{align*}but even integrating by parts I'm not sure how to get this
 
ergospherical said:
What is ##<x|P|x'>##? (for particle in 1d, and ##\hbar = 1##)?\begin{align*}
<x|P|x'> &= \int dp' <x|P|p'><p'|x'> \\
&= \int dp' \ p' <x|p'> <p'|x'> \\
&= \int dp' \ p' \frac{1}{\sqrt{2\pi}} e^{ip'x} \frac{1}{\sqrt{2\pi}} e^{-ip'x'} \\
&= \frac{1}{2\pi} \int dp' \ p' e^{ip'(x-x')}
\end{align*}
From this you get
$$\langle x|\hat{P}|x' \rangle=\frac{1}{2 \pi} (-\mathrm{i} \partial_x) \int_{\mathbb{R}} \mathrm{d} p' \exp[\mathrm{i} p' (x-x')]=-\mathrm{i} \partial_x \delta(x-x').$$
 
  • Like
  • Care
Likes   Reactions: topsquark, malawi_glenn and ergospherical

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K