What is the Wave Function for a Particle in One Dimension in Dirac Formalism?

Click For Summary
The discussion focuses on evaluating the expression for the wave function of a particle in one dimension using Dirac formalism, specifically the operator ##<x|P|x'>##. The calculations involve integrating over momentum states and applying the Fourier transform, leading to the expression ##\frac{1}{2\pi} \int dp' \ p' e^{ip'(x-x')}##. Participants discuss the integration by parts technique to derive the expected result, which is ##-i \frac{\partial}{\partial x} \delta(x-x')##. The final conclusion confirms that the wave function for the momentum operator in this context evaluates to the derivative of the delta function.
ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,100
Reaction score
1,387
Misplaced Homework Thread
What is ##<x|P|x'>##? (for particle in 1d, and ##\hbar = 1##)?\begin{align*}
<x|P|x'> &= \int dp' <x|P|p'><p'|x'> \\
&= \int dp' \ p' <x|p'> <p'|x'> \\
&= \int dp' \ p' \frac{1}{\sqrt{2\pi}} e^{ip'x} \frac{1}{\sqrt{2\pi}} e^{-ip'x'} \\
&= \frac{1}{2\pi} \int dp' \ p' e^{ip'(x-x')}
\end{align*}
 
Physics news on Phys.org
ergospherical said:
What is ##<x|P|x'>##? (for particle in 1d, and ##\hbar = 1##)?\begin{align*}
<x|P|x'> &= \int dp' <x|P|p'><p'|x'> \\
&= \int dp' \ p' <x|p'> <p'|x'> \\
&= \int dp' \ p' \frac{1}{\sqrt{2\pi}} e^{ip'x} \frac{1}{\sqrt{2\pi}} e^{-ip'x'} \\
&= \frac{1}{2\pi} \int dp' \ p' e^{ip'(x-x')}
\end{align*}
I'm not sure what the question is? So far so good. Now integrate by parts.

-Dan
 
  • Like
Likes Demystifier
it's supposed to evaluate to \begin{align*}
-i \frac{\partial}{\partial x} \delta(x-x')
\end{align*}but even integrating by parts I'm not sure how to get this
 
ergospherical said:
What is ##<x|P|x'>##? (for particle in 1d, and ##\hbar = 1##)?\begin{align*}
<x|P|x'> &= \int dp' <x|P|p'><p'|x'> \\
&= \int dp' \ p' <x|p'> <p'|x'> \\
&= \int dp' \ p' \frac{1}{\sqrt{2\pi}} e^{ip'x} \frac{1}{\sqrt{2\pi}} e^{-ip'x'} \\
&= \frac{1}{2\pi} \int dp' \ p' e^{ip'(x-x')}
\end{align*}
From this you get
$$\langle x|\hat{P}|x' \rangle=\frac{1}{2 \pi} (-\mathrm{i} \partial_x) \int_{\mathbb{R}} \mathrm{d} p' \exp[\mathrm{i} p' (x-x')]=-\mathrm{i} \partial_x \delta(x-x').$$
 
  • Like
  • Care
Likes topsquark, malawi_glenn and ergospherical
I want to find the solution to the integral ##\theta = \int_0^{\theta}\frac{du}{\sqrt{(c-u^2 +2u^3)}}## I can see that ##\frac{d^2u}{d\theta^2} = A +Bu+Cu^2## is a Weierstrass elliptic function, which can be generated from ##\Large(\normalsize\frac{du}{d\theta}\Large)\normalsize^2 = c-u^2 +2u^3## (A = 0, B=-1, C=3) So does this make my integral an elliptic integral? I haven't been able to find a table of integrals anywhere which contains an integral of this form so I'm a bit stuck. TerryW

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K