Warmacblu
- 103
- 0
Doc Al said:Work = F*d*cosθ, where θ is the angle between the force and the displacement. Note that F*cosθ can be viewed as the component of force in the direction of the displacement. If there's no component of force in the direction of the displacement, then that force does no work.
This might help a bit: http://hyperphysics.phy-astr.gsu.edu/hbase/work2.html#wdef"
I love HyperPhysics, I have been referencing that site since day one.
I got the correct answer for the first part ... 142.99. Now onto the third part.
I am asked to find the magnitude of the normal force between the block and the wall. The normal force is being exerted by the wall to counter the force I put on the block.
The force I put on the block is what I just solved ... Fdcos(theta) and the work done by the normal force is ...
I can't seem to come up with a definite answer but I can take a stab at it.
I believe the normal force would be the opposite of the force put on the block, so -Fdsin(theta)?
I am having a hard time understand the normal force for this problem.
Any help is appreciated.
I just thought about this. The normal force is the same force exerted by the first force from part 1 so I have to convert that number into N to get my answer. But I don't know how that would work if the force is at an angle.
Last edited by a moderator: