Hmm. The charge distribution will settle into a minimum energy configuration. For ##\frac{1}{r^2}##, all of the charge would go to the surface of the sphere, and the field inside would be zero. For ##\frac{1}{r^3}##, the field inside would still have to be zero (otherwise, charges would continue to redistribute) but it isn't so obvious what the charge density is.
We need to find a distribution such that the field is 0. By symmetry, the distribution must be only a function of radius.
Pick an arbitrary point in the sphere. Without loss of generality, we assume the point to be on the z-axis, going through the center of the sphere. Let the position be ##(0,0,z')##. The field at that point is
##0 = F = \int\limits_0^\pi \int\limits_0^R 2\pi f(r,\theta) r^2 \sin \theta dr d\theta##
where ##f(r,\theta)## is the piece of field at the point due to the charge density at ##(r,\theta)##. We can ignore the ##\phi## coordinate due to symmetry.
The amplitude of the piece of field f is
##|f(r,\theta)| = \rho(x,y,z) \frac{1}{[(x-x')^2 + (y-y')^2 + (z-z')^2]^{3/2}}##
where (x,y,z) are the position of the differential charge and (x',y',z') = (0,0,z') is the arbitrary point.
##z = r \cos \theta##
##x^2 + y^2 = (r \sin \theta)^2##
so
##|f(r,\theta)| = \rho(x,y,z) \frac{1}{[(r \sin \theta)^2 + (r \cos \theta -z')^2]^{3/2}}##
The angle ##\alpha## of the field f to the z axis is given by
##\tan \alpha = \frac{r \sin \theta}{r \cos \theta - z'}##
so the z component of the field f is
##f_z = \cos \alpha |f(r,\theta)|##
to be continued.