Prevailing Universe model of the origin and expansion of spacetime and all that it contains
H_0 = 2.3298 \cdot 10^{- 18} \; \text{s}^{- 1} - Hubble parameter (WMAP)
\Omega_b = 0.0456 - Lambda-CDM baryon density
\Omega_h = 0.0033 - Lambda-CDM heavy baryonic matter and neutrino density
Universe heavy baryonic matter stellar burn rate integration by substitution:
R_b = \frac{d \Omega}{dt} = \Omega_h H_0 = 7.688 \cdot 10^{-21} \; \frac{d \Omega}{\text{s}}
Universe heavy baryonic matter stellar burn rate:
\boxed{R_b = 7.688 \cdot 10^{-21} \; \frac{d \Omega}{\text{s}}}
Universe baryonic matter stellar epoch burn lifetime integration by substitution:
T_s = d \Omega \cdot dt = \frac{\Omega_b}{R_b} = \frac{\Omega_b}{\Omega_h H_0} = 5.931 \cdot 10^{18} \; \text{s} = 1.879 \cdot 10^{11} \; \text{y}
Universe baryonic matter stellar epoch burn lifetime:
\boxed{T_s = \frac{\Omega_b}{\Omega_h H_0}}
Universe baryonic matter stellar epoch burn lifetime:
\boxed{T_s = 1.879 \cdot 10^{11} \; \text{y}}
Universe age:
T_u = \frac{1}{H_0} = 4.292 \cdot 10^{17} \; \text{s} = 1.36 \cdot 10^{10} \; \text{y}
\boxed{T_u = 1.36 \cdot 10^{10} \; \text{y}}
Number of present Universe ages required to complete baryonic matter stellar epoch burn lifetime:
n_a = \frac{T_s}{T_u} = \frac{\Omega_b}{\Omega_h} = 13.818
The Universe will be producing stars for a very long time...
[/Color]
Reference:
http://en.wikipedia.org/wiki/Lambda-CDM_model#Parameters"
http://en.wikipedia.org/wiki/Heat_death_of_the_universe"
http://en.wikipedia.org/wiki/Universe"