I What year were Navier-Stokes equations introduced?

AI Thread Summary
The discussion centers on the historical development of the Navier-Stokes equations, highlighting contributions from Navier in 1821 and Stokes in 1846, along with other mathematicians who sought to refine these equations. It emphasizes that while the main formula has remained consistent since 1821, various attempts were made to simplify the equations by altering assumptions about fluid properties. The conversation references specific historical documents that detail Navier's foundational work and the evolution of fluid dynamics theories. Participants express frustration over the complexity of the original texts and the need for modern notation to facilitate understanding. The thread concludes with a reminder of the importance of engaging directly with the source materials for deeper insights.
user079622
Messages
449
Reaction score
29
User has been reminded of a new technilogical advancement called "Google search"...
Who and when first time introduced below equations(dont have to be in same notation, content is important)?

0bZdvG1C.jpg



If this formula is always the same, what is contribution of Navier, what of Stokes, what changes all these years?
 
Last edited:
Physics news on Phys.org
Between Navier in 1821-2 and Stokes report in 1846, many mathematicians and experimenters were trying to find a more tractable solution. The names dropped by Stokes in his 1846 discussion and summary of that period include; Airy, Cauchy, Challis, Coulomb, Dubuat, Girard, Green, Kelland, Lagrange, Navier, Ostrogradsky, Plana, Poisson, Power, and Russel.

Those attempts involved changing assumptions like the shape of the fluid parcel between square, tetrahedral, sphere and ellipsoid, considering compressibility or not, and how to handle circulation, while investigating viscosity and understanding the boundary layer.

It seems many wanted to avoid Navier's intractable equations, but a better alternative was not found.
 
  • Like
Likes user079622
I find this:

http://physics.uwyo.edu/~rudim/ArchHistExSci56_2002_FiveBirthsOfNavierStokes_Sum15.pdf

"Éléments d’analyse
des articles historiques
de Navier
La contribution historique de Navier aux équations du mouvement des flui-des a fait l’objet d’une présentation à l’Académie des sciences le 18 mars 1822, et se trouve développée dans deux contributions écrites :
– « Sur les lois des mouvements des fluides, en ayant égard à l’adhésion des molécules », Annales de chimie et de physique, tome XIX, 1821 ;
– « Sur les lois des mouvements des fluides » (lu à l’Académie des sciences le 18 mars 1822), Mémoires de l’Académie des sciences, sciences mathématiques et physiques, tome VI (1823), 1827.

L’article de 1821, que l’on peut consi-dérer comme article fondateur, secontente de développer les conséquen-ces de l’hypothèse sur l’expression locale de la force de viscosité (il ren-voie d’ailleurs pour les détails à une autre contribution récente de Navier, elle aussi de 1821, relative aux lois de l’élasticité, qui contient une mise en équations et un calcul formellement semblables), puis injecte cette force supplémentaire dans les équations d’Euler."
 

Attachments

Last edited:
Baluncore said:
"On the development of the Navier-Stokes equation by Navier"
For the notation used by Navier see:
https://www.scielo.br/j/rbef/a/nNpqpRmKN8J3zPhV4WN4vFF/?lang=en#
Look at section 4 of this text.

My copy of the .pdf came from:
https://www.scielo.br/j/rbef/a/nNpqpRmKN8J3zPhV4WN4vFF/?format=pdf&lang=en
What are differences in equations from https://gallica.bnf.fr/ark:/12148/bpt6k6571078m/f250.item and https://perso.crans.org/epalle/M2/EC/Histoire/Navier1822MemoireSurLesLoisDuMouvementDesFluides.pdf?
 
  • #11
berkeman said:
Why don't you read the papers and tell us?
Because I dont understand France and cartesian hieroglyphics.
 
  • Skeptical
Likes weirdoguy
  • #12
user079622 said:
Because I dont understand France and cartesian hieroglyphics.
You are asking too much of others to do your work for you. Thread is closed.
 

Similar threads

Back
Top