What is Fourier Analysis and its Applications?

AI Thread Summary
The discussion centers on the relevance of Fourier analysis in college and graduate mathematics, highlighting its applications in both pure and applied math. It emphasizes the importance of Fourier analysis in fields like physics and electrical engineering (EE), where it is essential for understanding concepts in signal processing, data compression, and solving ordinary and partial differential equations. The discussion notes that while a basic understanding can be achieved with minimal math, deeper insights require knowledge of calculus and linear algebra. Fourier analysis is particularly crucial for electrical engineers, who utilize it daily to interpret frequency domain information and apply techniques like filtering to enhance signal clarity. The conversation underscores the significance of Fourier analysis in various EE disciplines, making it a foundational topic in engineering education.
Success
Messages
75
Reaction score
0
Is this college or graduate math? Is it pure or applied math? Is it useful for physics and electrical engineering?
 
Physics news on Phys.org
All of the above.

You can understand the basics of what it means and how to use it for some practical applications with very little maths (i.e. high school level), if you are happy to use computer software to crunch the numbers for you.

At the other end of the scale, Springer publish the Journal of Fourier Analysis and Applications, for new research papers.

A random selection of applications for it are image processing, signal processing, data compression (e.g. MP3 audio and and JPG video), and advanced methods for solving ODEs and PDEs.
 
All undergrad electrical engineers take a course (or set of courses) on "signals and systems" that is essentially applied Fourier analysis, both in discrete time, continuous time, etc., along with related tools like Laplace and Z transforms. You will find it used in a large percentage of EE disciplines - signal processing, communications, electromagnetics, etc. It is hard to underestimate its importance for EE. It is also a lot of fun. I use Fourier analysis almost every day in my work (I am an EE). My EE courses carefully stated all the convergence theorems, but did not prove them; at that level all you really need is calculus to understand Fourier. Proving the convergence theorems is another story altogether, though.

jason

edit: linear algebra is also helpful for understanding Fourier - it was a prereq. for our signals class and the ideas from linear algebra are natural to use to think about Fourier series, both in continuous and discrete time.
 
  • Like
Likes 1 person
I can echo Fourier Analysis' importance in EE. I use Fourier concepts daily in my work as well. While many EEs don't do a lot of hand analysis, we have to interpret a lot of information in the frequency domain and that is where deep understanding of the concepts of Fourier Analysis is important.
 
Basically, Fourier showed that all periodic functions can be broken down into a sum of simple sinusoidal waves of various frequencies. (Think superposition principle, if you know it) The Fourier transform takes a function and gives you the coefficients of the terms in that sum.

An application is filtering. A noisy signal looks like a clean signal, but has lots of tiny spikes and troughs on it. Using Fourier analysis, we can find the coefficients for the sum, then set them equal to zero beyond a certain frequency threshold. Then the tiny spikes-which correspond to very high frequencies- aren't added into our sum, so when we put everything back together we get a nice smooth and clear signal.
 
After a year of thought, I decided to adjust my ratio for applying the US/EU(+UK) schools. I mostly focused on the US schools before, but things are getting complex and I found out that Europe is also a good place to study. I found some institutes that have professors with similar interests. But gaining the information is much harder than US schools (like you have to contact professors in advance etc). For your information, I have B.S. in engineering (low GPA: 3.2/4.0) in Asia - one SCI...
Bit Britain-specific but I was wondering, what's the best path to take for A-Levels out of the following (I know Y10 seems a bit early to be thinking about A-levels, but my choice will impact what I do this year/ in y11) I (almost) definitely want to do physics at University - so keep that in mind... The subjects that I'm almost definitely going to take are Maths, Further Maths and Physics, and I'm taking a fast track programme which means that I'll be taking AS computer science at the end...
I graduated with a BSc in Physics in 2020. Since there were limited opportunities in my country (mostly teaching), I decided to improve my programming skills and began working in IT, first as a software engineer and later as a quality assurance engineer, where I’ve now spent about 3 years. While this career path has provided financial stability, I’ve realized that my excitement and passion aren’t really there, unlike what I felt when studying or doing research in physics. Working in IT...

Similar threads

Replies
21
Views
2K
Replies
11
Views
2K
Replies
18
Views
3K
Replies
9
Views
2K
Replies
11
Views
2K
Replies
5
Views
2K
Back
Top