Odious Suspect
- 42
- 0
We begin with this definition of a hyperbola.
\left(\overline{F_1 P}-\overline{F_2 P}=2 a\right)\land a>0
Perform a few basic algebraic manipulations.
\sqrt{(c+x)^2+y^2}-\sqrt{(x-c)^2+y^2}=2 a
\sqrt{(c+x)^2+y^2}=2 a+\sqrt{(x-c)^2+y^2}
(c+x)^2+y^2=4 a^2+4 a \sqrt{(x-c)^2+y^2}+(x-c)^2+y^2
Clearly both sides of this equation must be non-negative. Expand the squares.
c^2+2 c x+x^2+y^2=4 a^2+4 a \sqrt{(x-c)^2+y^2}+c^2-2 c x+x^2+y^2
Again, it appears that both sides must be non-negative. The equation appears to valid without an absolute value symbol.
Now we subtract away some non-negative terms.
2 c x=4 a^2+4 a \sqrt{(x-c)^2+y^2}-2 c x
If x<0 there are no real solutions. We can patch it up with absolute value symbols. But when should that restriction first be introduced?
c x-a^2=a \sqrt{(x-c)^2+y^2}
\mid \frac{c}{a} x-a \mid = \sqrt{(x-c)^2+y^2}
\left(\overline{F_1 P}-\overline{F_2 P}=2 a\right)\land a>0
Perform a few basic algebraic manipulations.
\sqrt{(c+x)^2+y^2}-\sqrt{(x-c)^2+y^2}=2 a
\sqrt{(c+x)^2+y^2}=2 a+\sqrt{(x-c)^2+y^2}
(c+x)^2+y^2=4 a^2+4 a \sqrt{(x-c)^2+y^2}+(x-c)^2+y^2
Clearly both sides of this equation must be non-negative. Expand the squares.
c^2+2 c x+x^2+y^2=4 a^2+4 a \sqrt{(x-c)^2+y^2}+c^2-2 c x+x^2+y^2
Again, it appears that both sides must be non-negative. The equation appears to valid without an absolute value symbol.
Now we subtract away some non-negative terms.
2 c x=4 a^2+4 a \sqrt{(x-c)^2+y^2}-2 c x
If x<0 there are no real solutions. We can patch it up with absolute value symbols. But when should that restriction first be introduced?
c x-a^2=a \sqrt{(x-c)^2+y^2}
\mid \frac{c}{a} x-a \mid = \sqrt{(x-c)^2+y^2}
Last edited: