When to use the Jacobian in spherical coordinates?

Amaelle
Messages
309
Reaction score
54
Homework Statement
look at the image
Relevant Equations
jacobian is r^2 sinv
Greetings!
1639498591229.png


here is the solution which I undertand very well:
1639498692794.png

1639498769703.png


my question is:
if we go the spherical coordinates shouldn't we use the jacobian r^2*sinv?

thank you!
 

Attachments

  • 1639410956821.png
    1639410956821.png
    10.7 KB · Views: 190
  • 1639411043905.png
    1639411043905.png
    8.3 KB · Views: 167
Physics news on Phys.org
It's sort of already baked in. The surface element comes from a little parallelogram with sides ##d\boldsymbol{l}_u = \frac{\partial \boldsymbol{\sigma}}{\partial u} du## and ##d\boldsymbol{l}_v = \frac{\partial \boldsymbol{\sigma}}{\partial v} dv## and therefore area
\begin{align*}
dS = |d\boldsymbol{l}_u \times d\boldsymbol{l}_v| = \left| \frac{\partial \boldsymbol{\sigma}}{\partial u} \times \frac{\partial \boldsymbol{\sigma}}{\partial v} \right| du dv
\end{align*}The part ##\frac{\partial \boldsymbol{\sigma}}{\partial u} \times \frac{\partial \boldsymbol{\sigma}}{\partial v}## is what your solutions denoted by the vector ##\mathbf{N}##.
 
Last edited:
thank you so much!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top