dalcde
- 164
- 0
When we say that two algebraic expressions, f(x_1,x_2,\cdots x_n), g(x_1,x_2,\cdots x_n) are identical, or
f(x_1,x_2,\cdots x_n)\equiv g(x_1,x_2,\cdots x_n), we mean (according to my textbook) that \forall x_1,x_2,\cdots x_n: f(x_1,x_2,\cdots x_n)=g(x_1,x_2,\cdots x_n)
However, does that mean that
x^2+x\equiv0
in Z^2?
If not, does it mean that
f(x_1,x_2,\cdots x_n)\equiv g(x_1,x_2,\cdots x_n)\Leftrightarrow\forall\phi: \phi(f(x_1,x_2,\cdots x_n))=\phi(g(x_1,x_2,\cdots x_n))
f(x_1,x_2,\cdots x_n)\equiv g(x_1,x_2,\cdots x_n), we mean (according to my textbook) that \forall x_1,x_2,\cdots x_n: f(x_1,x_2,\cdots x_n)=g(x_1,x_2,\cdots x_n)
However, does that mean that
x^2+x\equiv0
in Z^2?
If not, does it mean that
f(x_1,x_2,\cdots x_n)\equiv g(x_1,x_2,\cdots x_n)\Leftrightarrow\forall\phi: \phi(f(x_1,x_2,\cdots x_n))=\phi(g(x_1,x_2,\cdots x_n))