Which is Moving Faster? Basic Question Explained

  • Thread starter Thread starter zmqp
  • Start date Start date
  • Tags Tags
    Space
zmqp
Messages
1
Reaction score
0
I have been unable to find a clear explanation to this basic question which is at the core of my lack of understanding the relativity. Everything I've found is either too general, or too technical. Please excuse my simplifications and lack of technical language.

As I understand it (in very simple terms), given two objects, the one which is moving faster relative to the other will experience time going by at a slower pace. What I don't understand is, given two objects in space, how can one be said to be moving faster or slower RELATIVE to the other? Wouldn't they both be moving at equal and opposite velocities RELATIVE to one another?

I don't understand. Can someone please shed some light, or direct me towards some reference material to help me with this? Thank you in advance.
 
Physics news on Phys.org
zmqp said:
As I understand it (in very simple terms), given two objects, the one which is moving faster relative to the other will experience time going by at a slower pace.

This is not correct. There is no such thing as an object "moving faster" than another object - it all depends on the inertial frame. In particular, in the rest frame of object A, object B will be moving faster and vice versa.

zmqp said:
Wouldn't they both be moving at equal and opposite velocities RELATIVE to one another?
Yes they would. What you might be missing is the relativity of simultaneity, which is what implies that each object would consider time to be moving more slowly for the other.
 
Hello zm, welcome to PF :smile: !

It is rather funny you are asking the one question that cannot be asked ! Not to worry, it happens a lot (to me too at some time) because we have our own built-in frame of reference. The key thing about relativity is exactly that all uniform motion is relative. No one can say "my frame of reference stands still" and back it up with a decisive experiment.

For objects A and B with their inertial reference frames a and b "slower or faster relative to the other" cannot be said. "slower or faster" cannot be said either. The only thing that holds up is something like "slower or faster relative to a third inertial reference frame c".

You'll be fine. Keep asking questions like this.
 
The relative velocity of particle 2 to particle 1 is defined as the velocity of particle 2 in the restframe of particle 1.

The most easy way to obtain the relative velocity is to work with the four-velocities, which are four-vectors in Minkowski space,
$$u_1^{\mu}=\begin{pmatrix} \gamma_1 \\ \gamma_1 \vec{v}_1/c \end{pmatrix},\quad u_2^{\mu}=\begin{pmatrix} \gamma_2 \\ \gamma_2 \vec{v}_2/c \end{pmatrix}.$$
The Lorentz boost to the restframe of particle 1 is given by
$${\Lambda^{\mu}}_{\nu} = \begin{pmatrix} \gamma_1 & -\gamma_1 \vec{v}_1^T/c \\ -\gamma_1 \vec{v}_1/c & \mathbb{1}_3 +\frac{\gamma_1-1}{\vec{v}_1^2} \vec{v}_1 \otimes \vec{v}_1 \end{pmatrix}.$$
The four-velocity of particle 2 in the restframe of particle 1 is thus after some algebra given by
$$\tilde{u}_2^{\mu} = \frac{\Lambda^{\mu}}{\nu} u_2^{\mu} = \begin{pmatrix} \gamma_1 \gamma_2 (1-\vec{v}_1 \cdot \vec{v}_2/c^2) \\ (\vec{v}_2-\vec{v}_1)/c + (\gamma_1-1) [(\vec{v}_1 \cdot \vec{v}_2)/\vec{v}_1^2-1] \vec{v_1}/c \end{pmatrix}.$$
Finally the relative three-velocity is given by
$$\vec{v}_2^{(\text{rel})}=\frac{\tilde{\vec{u}}_1}{u_2^0} c=\frac{\vec{v}_2-\vec{v}_1}{\gamma_1(1-\vec{v}_1 \cdot \vec{v}_2/c^2)} - \frac{\gamma_1-1}{\gamma_1} \vec{v}_1.$$
The relative speed is easier to calculate directly from the temporal argument of ##\tilde{u}_2^{0}=\gamma_2^{(\text{rel})}##
$$\left |\vec{v}_2^{(\text{rel})} \right|=c \sqrt{1-\frac{(c^2-\vec{v}_1^2)(c^2-\vec{v}_2^2)}{c^2-\vec{v}_1 \cdot \vec{v}_2}}.$$
As you see by exchanging the particle labels 1 and 2, the relative speed of particle 1 wrt. particle 2 is the same as the relative speed of particle 2 in the restframe of particle 1. Note, however that generally $$\vec{v}_1^{(\text{rel})} \neq -\vec{v}_2^{(\text{rel})}$$.
 
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Thread 'Dirac's integral for the energy-momentum of the gravitational field'
See Dirac's brief treatment of the energy-momentum pseudo-tensor in the attached picture. Dirac is presumably integrating eq. (31.2) over the 4D "hypercylinder" defined by ##T_1 \le x^0 \le T_2## and ##\mathbf{|x|} \le R##, where ##R## is sufficiently large to include all the matter-energy fields in the system. Then \begin{align} 0 &= \int_V \left[ ({t_\mu}^\nu + T_\mu^\nu)\sqrt{-g}\, \right]_{,\nu} d^4 x = \int_{\partial V} ({t_\mu}^\nu + T_\mu^\nu)\sqrt{-g} \, dS_\nu \nonumber\\ &= \left(...
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
Back
Top