MHB Does Conditional Probability Increase with Dependence?

  • Thread starter Thread starter mathmari
  • Start date Start date
AI Thread Summary
The discussion centers on the relationship between conditional probability and dependence, specifically examining the implications of the condition P(A|B) > P(A) when P(A) and P(B) are both 2/3. Participants analyze whether this condition leads to P(B|A) being greater than or less than P(B). Through mathematical reasoning, it is concluded that P(B|A) must be greater than P(B), confirming the correctness of the first proposed answer. The use of Bayes' theorem supports this conclusion, reinforcing the connection between the probabilities. Overall, the discussion effectively demonstrates how conditional probability reflects dependence in this context.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Suppose that for the events $A,B$ of an experiment it holds that $P(A|B)>P(A)$ ( $P(A)=P(B)=\frac{2}{3}$ ) then what of the following holds?

  1. $P(B|A)>P(B)$ ( $P(A|B)\geq \frac{1}{2}$ )
  2. $P(B|A)>P(B)$ ( $P(A|B)\leq \frac{1}{3}$ )
  3. $P(B|A)<P(B)$ ( $P(A|B)\geq \frac{1}{3}$ )
  4. $P(B|A)<P(B)$ ( $P(A|B)\geq \frac{1}{6}$ )
I have done the following:

$P(A|B)=\frac{P(BA)}{P(B)}$ and since $P(A|B)>P(A) \Rightarrow \frac{P(BA)}{P(B)}>P(A) \Rightarrow P(BA)>P(B)P(A)$.

Then $P(B|A)=\frac{P(AB)}{P(A)}>\frac{P(B)P(A)}{P(A)}=P(B)$, right? (Wondering)

When $P(A)=P(B)=\frac{2}{3}$, then $P(A|B)>P(A)\Rightarrow P(A|B)>\frac{2}{3}$.

How can we continue?
 
Physics news on Phys.org
Hey mathmari! (Smile)

Don't we already have enough information to figure out which answers are true or false? (Wondering)
 
I like Serena said:
Hey mathmari! (Smile)

Don't we already have enough information to figure out which answers are true or false? (Wondering)

(Thinking)

The first one is correct, or not? (Wondering)
 
mathmari said:
(Thinking)

The first one is correct, or not? (Wondering)

Hmm... let's see...

We found that $P(A|B) > \frac 23$.
Does that imply that $P(A|B) \ge \frac 12$ or not? (Wondering)
 
In addition to I Like Serena's post, making use of Bayes rule:
$$P(B \ | \ A) = \frac{P(A \ | \ B) P(B)}{P(A)} = P(A \ | \ B) > P(A) = P(B).$$
Hence, first answer is indeed correct.
 
I was reading documentation about the soundness and completeness of logic formal systems. Consider the following $$\vdash_S \phi$$ where ##S## is the proof-system making part the formal system and ##\phi## is a wff (well formed formula) of the formal language. Note the blank on left of the turnstile symbol ##\vdash_S##, as far as I can tell it actually represents the empty set. So what does it mean ? I guess it actually means ##\phi## is a theorem of the formal system, i.e. there is a...
Back
Top