The "physical tensors"
My apologies to « atyy ». I felt a slipping slope and a spreading of the initial problem. Sorry. I have also to improve my english to find all the correct civil sentences.
Now, the things remains not clear for me. « bcrowell » after « Sadraj » said that GR is « agnostic » to changes of coordinates.
But, there are two approaches about the changes of coordinates.
First, coordinates are associated with charts on a manifold, say M, and changes of charts are associated with changes of coordinates. These changes of charts can be smooth and the Jacobian matrices can have nonvanishing determinants different from unity. Such changes of charts are associated with the notion of covariance (indices, etc…).
Second, the diffeomorphisms on M are independent on the charts and some consider that change of coordinates are also associated with such diffeomorphisms. Clearly, it is wrong. There are defined independently on the charts and thus independently on the coordinates.These diffeomorphisms can be conformal or not, i.e., the metric is scaled passing from one point m in M to another point m’ in M. Also, there exist manifolds on which conformal diffeomorphisms do not exist. As a consequence, conformal changes of charts do not exist as well. On contrary, an example of conformal theory is the H. Weyl theory among more recent others.
But, problems appear in conformal theories. If you admit scaling changes passing from a point m in M to another point m’ in M, then, you need to have a physical observable to indicate the change of scale passing from m to m’; and, in particular, the change of scale between the metric at m and the metric at m’; and also, passing from a chart at m to another chart at m’.
If you admit that such scaling changes on M are not related, in any way, to physical observables at disposal (it was one of the criticisms historically made against the conformal Weyl theory), then, necessarily, you admit to be unable to reach physically the information on scalings. If you consider that you have all the informations and that any information on scaling is then void of meaning then you consider that scalings do not exist; And therefore, that scaling changes on the determinants of the various changes of « … » are forbidden because not physical. And, in particular, that changes of coordinates with scalings on the Jacobian matrices are also forbidden. And thus,... the determinant of the metric in any charts, coordinates, must be set to -1.
Equivalently, this means that you are able to compare physically different scales at different points in M; in other words, to compare the lengths of the rulers at different points in M; but more, to be able to effectively use rulers during the time (since making a length measurement is a process in time considering that the lengths of the rulers you use do not change in time). If you consider that you are unable to make physically these sorts of comparisons or to have these potential uses, then you admit that the value of the nonvanishing determinant of the metric can vary as you want; as well as the determinants of the Jacobian matrices associated with the different changes of charts (coordinates) you consider.
Questions about covariance is not the problem since covariance is related to changes of frames at a given point m in M, that is to changes of charts. But physical admissible changes of charts related to scalings, physical or not, is also the problem translated in the question: must the determinant of the metric be equal to -1 or not?
Of course, you can make changes of coordinates with determinants of the Jacobian matrices differing from unity, but then, that means that you abandon the possibilities to make comparisons between those geometrical objects expressed in the different systems of coordinates which are not « agnostic » with respect to changes of scale. Thus, you loose the means of scaling comparison between the two systems of coordinates. And then, it is related to this well-known notion of « physical tensors » of the tensorial calculus such as the cotensor $T_{i,j}/\sqrt{|g_{ii}\,g_{jj}|}$ associated with the cotensor $T_{i,j}$. You will be able to make comparisons and interpretations only between these « physical tensors » which are « agnostic » with respect to scaling changes.
Hence, the question rises to known if setting $|g|=-1$ is simpler or not and if this « equation of the determinant » must be or not included in practice in any computation in general relativity.
Bye
Rob