# Why are fractals and chaos theory synonymous?

1. Jan 31, 2014

I'm doing a presentation in a few weeks on fractals and chaos theory.
To me, their link is more intuitive than mathematically/physically sound, and I'm really struggling to put the link into words.

I've tried googling it, but no where seems to give a satisfactory explanation of the link, they're just stuck together for no apparent reason.

Bear in mind that the explanation needs to be in layman's terms. In my case, a graphical, pictorial or intuitive explanation will be sufficient. An example where the link is clear would also work.

Many thanks for any responses :)

2. Jan 31, 2014

### phinds

Hm ... I don't see any link at all. Fractals are a well-defined, organized structure that can be represented mathematically. Chaos theory is a whole filed of study. I think you are barking up the wrong tree on this. Certainly, to say they are synonymous is just silly.

3. Jan 31, 2014

### Filip Larsen

If you take a fractal to mean a (geometrical) structure that is self-similar on a finite or infinite range of scale with regard to some measure, then certain descriptions (like poincare maps [1] and bifurcation diagrams[2]) of chaotic systems may, as you probably know, exhibit a fractal structure. In that sense you could argue that chaos theory utilize some of the concepts (or definitions, if you like) from fractal theory, but I don't think you would be able to take it much further than that. To my knowledge (which unfortunately is some years old in this area) the theory of fractals does not by itself give any additional general insight into the behavior of chaotic systems. For instance, you should not expect to find a link between chaos and fractal that is similar to the hydraulic analogy [3].

[1] http://en.wikipedia.org/wiki/Poincaré_map
[2] http://en.wikipedia.org/wiki/Bifurcation_diagram
[3] http://en.wikipedia.org/wiki/Hydraulic_analogy

4. Jan 31, 2014

The reason I say synonymous is that whenever you google chaos theory, you almost always get fractals too.

5. Jan 31, 2014

I'm going to be linking fractals and chaos theory to life and the universe, so what about something along these lines:

universe is chaotic; changing the initial 'parameters' would result in a totally different universe.
universe is like a fractal - infinite and similar complexity on every level.

Or something to that effect. So rather than link the two, link them both to the same thing. Thoughts?

6. Feb 1, 2014

### Number Nine

Those connections are so tenuous that you're no longer doing mathematics. Why not use an actual chaotic system as an example?