Why Are u and v Functions Zero in VOP for Homogeneous 2nd Order Equations?

lonewolf219
Messages
186
Reaction score
2
I just realized you can use variation of parameters (VOP) to solve for homogeneous 2nd order equations. I see it takes much longer to do so. But I was wondering why, if you use VOP, the u and v functions are 0. Is this because the coefficients of the homogeneous equation are constant, or possibly because the differential equation is equal to 0 to begin with?
 
Physics news on Phys.org
One way to look at it is simply to note that VOP results in a valid solution to the problem. The uniqueness theorem assures you that you have the only correct solution.
 
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...
Back
Top