A Why are we allowed to use the trace cyclicity here?

  • A
  • Thread starter Thread starter Heidi
  • Start date Start date
  • Tags Tags
    Trace
Heidi
Messages
420
Reaction score
40
TL;DR Summary
trace cyclicity with operators?
Hi Pf
i am reading this article: pillet.univ-tln.fr/data/pdf/KMS-states.pdf
I know that the trace cyclicity can be used when there is a product of matrices. But here we have operators (an hamiltonian , an operator which can be the position operators) . the author take the trace of a product. is this product trace class? are we allowed to use the cyclicity formula of the trace here?
thanks.
 
Physics news on Phys.org
The operators are bounded because the Hilbert space is finite-dimensional. So we're talking here about finite matrices.
 
yes but my question is more general. Consider 2 operators A and B on an infinite dimensional Hilbert space. If the products AB and BA are class trace it is meaningful to consider Tr(AB) and Tr(BA)
Are there conditions on these operators so that trace cyclicity is true.
Qft is on infinite dimensional hilbert spaces and exp(-H) often appears as one of the operators in the trace.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top