anhnha said:
Hi,
I want to ask your help about energy.
Why can't energy change abruptly?
If energy E changes abruptly then power P = dE/dt = ∞. I would like to know why this is impossible?
I know that energy has to be conserved and they can only change from one form to the other. But why this process (transformation) can't change immediately?
I work with very interesting lasers: average energy is quite low, about 1 watt, and the laser is pulsed: 1,000 pulses per second. Thus each pulse has about 1 millijoule of energy.
Not much, eh?
But this is an ultrafast laser, meaning that the individual pulses are very short - less than a picosecond in duration. In my case about 30 femtoseconds, or 3*10^-14 seconds.
Energy is delivered over an area; with adaptive optics this laser can be focused to a spot size of about one wavelength: 800 nanometers; round it up to 10^-4 centimeters (1 micron).
Putting this all together gives an energy flux of 10^-3 joules/pi*(10^-4 centimeters)^2 =
10^5 joules/cm^2/pi = 3*10^4 joules/cm^2.
Apply this energy flux over the very brief pulse duration and the power per unit of area is:
3*10^4 joules/cm^2/3*10^-14 seconds = 10^18 watts/cm^2. Actually we can do a bit better, and the actual output is slightly over 10^19 watts/cm^2.
This power flux is sufficient to generate electron-positron pairs when striking a metal target in vacuum - and has done so.
So you see that it is possible to increase power by quite a bit - but at each step the equipment becomes more specialized and expensive!
But like so many things, the scaling laws give less and less as you put in more and more - so unlimited power flux is beyond reach.