MHB Why Can't I Integrate \( e^{\sqrt{x}} \) Like \( (3x+5)^{5} \)?

Click For Summary
The integral \(\int e^{\sqrt{x}}dx\) cannot be treated like \(\int (3x+5)^{5}dx\) because they represent fundamentally different functions. The first involves an exponential function with a variable exponent, while the second is a power function with a variable base. The method of integrating and dividing by the inner derivative applies only to linear (affine) functions, such as \(e^{mx+b}\) or \((mx+b)^n\). Since \(\sqrt{x}\) is not affine, the integration approach fails, leading to confusion over the additional terms in the solution. For \(\int e^{\sqrt{x}}dx\), integration by parts is recommended as a more suitable method.
Yankel
Messages
390
Reaction score
0
Hello,

I have this integral here:

\[\int e^{\sqrt{x}}dx\]

and I wanted to ask, why can't I treat it like I would treat this integral:

\[\int (3x+5)^{5}dx\]

In which I would integrate as if g(x)=3x+5 is a normal x, and then divide by the inner derivative ? I tried it with the upper integral, and it doesn't work, the solution includes another "-1" which I don't understand where comes from...

My incorrect answer would be

\[2\cdot \sqrt{x}\cdot e^{\sqrt{x}}\]why isn't it ?
 
Physics news on Phys.org
The first integral is of an exponential function (variable exponent), and the second is of a power function (variable base). They are completely different functions, behave differently, and have quite different antiderivatives. To do $\int e^{ \sqrt{x}} \, dx$, I would probably try by-parts first, and see what you get.
 
but

\[\int e^{3x}dx\]does work using the method I specified. How do I know when I can use and when I can't ?

(I mean the method of integrating and then dividing by the inner derivative).
 
I suppose your method would work any time the inner function of the exponential or power function is linear (or, more correctly, affine). That is, for any integral of the following types:
\begin{align*}
&\int e^{mx+b} \, dx, \quad \text{or} \\
&\int (mx+b)^n \, dx.
\end{align*}
But $\sqrt{x}$ is not an affine function of $x$.
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
6
Views
3K
Replies
4
Views
4K
  • · Replies 15 ·
Replies
15
Views
4K