I Why can't n be negative in Laplace's equation?

Click For Summary
Negative values for n are not permissible because they lead to solutions that contradict boundary conditions, specifically the requirement that V approaches zero as x approaches infinity. The sine function's odd property means that solutions for negative n would merely replicate those for positive n, albeit with different constants. However, introducing negative n would reintegrate terms that should be excluded based on the boundary conditions. Consequently, allowing n to be negative would violate the established conditions of the problem. Thus, maintaining n as a non-negative integer is essential for the integrity of the solution.
laser1
Messages
166
Reaction score
23
TL;DR
N/A
Griffiths Pg 133 4th Edition
1737829932254.png

Why can't n be negative? Is there a reason for this? My thought is that if n is negative, as sine is odd, the negative gets absorbed into C, a constant. Is this correct?

Would it be equally correct to let n be a negative integer?

Thank you
 
Physics news on Phys.org
Because ##\sin (-x) = - \sin(x)##, the solutions for negative ##n## simply repeat the solution for positive ##n##.
 
Last edited:
PeroK said:
Because ##\sin (-x) = - \sin(x)##, the solutions for negative ##n## simply repeat the solutionf for positive ##n##.
But with different constant, though?
 
laser1 said:
But with different constant, though?
The constant ##C## is arbitrary.
 
The solution of the problem is $$ V(x,y)=(Ae^{k x}+Be^{-k x})(C\sin(ky)+D\cos(ky)) $$ where ## k>0 ## and where the condition (iv) ## V\to0 ## as ## x\to\infty ## requires that A is equal to zero.
If ## n ## is negative ## -k ## will be positive and the part, which has already been excluded from the solution by ## A=0 ##, will be included into the solution again and the condition (iv) will be violated.
 
  • Like
Likes laser1 and PeroK
Gavran said:
The solution of the problem is $$ V(x,y)=(Ae^{k x}+Be^{-k x})(C\sin(ky)+D\cos(ky)) $$ where ## k>0 ## and where the condition (iv) ## V\to0 ## as ## x\to\infty ## requires that A is equal to zero.
If ## n ## is negative ## -k ## will be positive and the part, which has already been excluded from the solution by ## A=0 ##, will be included into the solution again and the condition (iv) will be violated.
Thank you
 
Thread 'Why higher speeds need more power if backward force is the same?'
Power = Force v Speed Power of my horse = 104kgx9.81m/s^2 x 0.732m/s = 1HP =746W Force/tension in rope stay the same if horse run at 0.73m/s or at 15m/s, so why then horse need to be more powerfull to pull at higher speed even if backward force at him(rope tension) stay the same? I understand that if I increase weight, it is hrader for horse to pull at higher speed because now is backward force increased, but don't understand why is harder to pull at higher speed if weight(backward force)...

Similar threads

  • · Replies 22 ·
Replies
22
Views
522
Replies
24
Views
4K
  • · Replies 12 ·
Replies
12
Views
2K
Replies
3
Views
2K
  • · Replies 27 ·
Replies
27
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
1
Views
1K
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K