Why do we use a square and square root method in the standard deviation formula?

gsingh2011
Messages
115
Reaction score
1
I would like to understand the theory behind the standard deviation formula. The way it was explained to me, you have to subtract each value from the mean and square it to avoid the negatives canceling out the positives. After multiplying and dividing by the correct frequencies, we have to square root our sum to correct the effects of squaring it. This explanation doesn't make sense to me because we could have just used absolute values to avoid the positive/negative problem, and it seems more accurate. So why do we use this square and then square root method?
 
Mathematics news on Phys.org
It is, basically, measuring the distance from the data to the norm, just like \sqrt{(x- a)^2+ (y- b)^2+ (z- c)^2} for distance in the plane.

Of course, you could measure "distance" by |x- a|+ |y- b|+ |z- c| and you could calculate such a number for a set of data but "absolute value" is not a very nice function- it is not differentiable at 0.

The most important reason for using "root mean square" definition is that it is the one that shows up in the normal distribution.
 
HallsofIvy said:
It is, basically, measuring the distance from the data to the norm, just like \sqrt{(x- a)^2+ (y- b)^2+ (z- c)^2} for distance in the plane.

Of course, you could measure "distance" by |x- a|+ |y- b|+ |z- c| and you could calculate such a number for a set of data but "absolute value" is not a very nice function- it is not differentiable at 0.

The most important reason for using "root mean square" definition is that it is the one that shows up in the normal distribution.

How does it "show up" in the normal distribution. I know there is a relation, like one standard deviation on each side of the mean is 68%, but why does there have to be a root mean square in order to have this correlation?
 
The normal distribution is actually a family of distributions with two parameters. These are the mean and the standard deviation (or the variance).

The 68% ~ one standard deviation is simply a fact of the shape of the normal distribution.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top