Why Does Adiabatic Compression Yield a Negative Work Calculation?

Click For Summary
In the discussion about adiabatic compression, participants clarify that while the work done on the gas is considered positive, the work done by the gas is negative. The confusion arises from the application of the first law of thermodynamics, where the internal energy change is expressed as ΔU = Q - W. The calculations initially yield a negative work value due to a misunderstanding of the sign convention. The correct interpretation is that during adiabatic compression, the work done by the gas is negative, aligning with standard thermodynamic conventions. This highlights the importance of understanding the context and sign conventions in thermodynamic calculations.
ewang
Messages
4
Reaction score
0
Homework Statement
Find the work done by the gas (or on the gas) for an adiabatic process starting at V = 0.024 m^3 and 101325 Pa and ending at 0.0082 m^3 and 607950 Pa. The working gas is helium
Relevant Equations
Work for adiabatic = area under pV diagram
p1V1^gamma = p2V2^gamma
This is a relatively simple problem, but I'm not getting the right answer. For adiabatic compression, work on gas is positive, since work on gas = ΔEth and the adiabatic process moves from a lower isotherm to a higher one. Integrating for work gives:
pV * (Vf(1 - gamma) - Vi(1 - gamma))/(1-gamma)
I believe this is correct, but when I plug in the numbers, I'm getting a negative number:
101325 Pa * 0.024 m3 * ((0.0082 m3)1 - 1.67 - (0.024 m3)1 - 1.67)/(1 - 1.67)
= -3823.6 J
 
Physics news on Phys.org
ewang said:
Homework Statement:: Find the work done by the gas (or on the gas) for an adiabatic process starting at V = 0.024 m^3 and 101325 Pa and ending at 0.0082 m^3 and 607950 Pa. The working gas is helium
Relevant Equations:: Work for adiabatic = area under pV diagram
p1V1^gamma = p2V2^gamma

This is a relatively simple problem, but I'm not getting the right answer. For adiabatic compression, work on gas is positive, since work on gas = ΔEth and the adiabatic process moves from a lower isotherm to a higher one. Integrating for work gives:
pV * (Vf(1 - gamma) - Vi(1 - gamma))/(1-gamma)
I believe this is correct, but when I plug in the numbers, I'm getting a negative number:
101325 Pa * 0.024 m3 * ((0.0082 m3)1 - 1.67 - (0.024 m3)1 - 1.67)/(1 - 1.67)
= -3823.6 J

Nevermind, work is negative integral oops. I was staring at this for the longest time.
 
The standard thermodynamics convention of signs is the Clausius convention
ΔU = Q - W
the variation of internal energy = Heat added to the system - Work done

Thus when the gas expands we have positive work
 
  • Like
Likes Lnewqban
ewang said:
Homework Statement:: Find the work done by the gas (or on the gas) for an adiabatic process starting at V = 0.024 m^3 and 101325 Pa and ending at 0.0082 m^3 and 607950 Pa. The working gas is helium
Relevant Equations:: Work for adiabatic = area under pV diagram
p1V1^gamma = p2V2^gamma

For adiabatic compression, work on gas is positive
Right. work done BY gas is negative. The 1st law is usually written ## dU = \delta Q - p dV ## in physics.
 
The book claims the answer is that all the magnitudes are the same because "the gravitational force on the penguin is the same". I'm having trouble understanding this. I thought the buoyant force was equal to the weight of the fluid displaced. Weight depends on mass which depends on density. Therefore, due to the differing densities the buoyant force will be different in each case? Is this incorrect?

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
18
Views
2K
Replies
4
Views
1K
  • · Replies 6 ·
Replies
6
Views
10K
Replies
5
Views
3K
  • · Replies 9 ·
Replies
9
Views
9K