Why Does f(a) < a Imply f(a) is Not a Fixed Point?

  • Thread starter Thread starter wj2cho
  • Start date Start date
  • Tags Tags
    Proof
wj2cho
Messages
20
Reaction score
0
Hi I've been trying to understand this proof, but there is one step that I don't get at all.

Proof: Suppose f is an automorphism of (E,<=). Consider a set D, a set of non-fixed points under f. If D is empty, f is an identity mapping. Suppose, toward a contradiction, that D is nonempty. Then D has a least element, say a. Since E is well-ordered, either f(a) < a or a < f(a). Since f(a) < a, f(a) is not an element of D. So f fixes f(a), hence f(f(a)) = f(a). But then f(a) = a since f is injective, contradicting that a is an element of D. The case a < f(a) follows similarly applying the inverse of f.

Why does f(a) < a imply that f(a) is not a fixed point?
 
Physics news on Phys.org
wj2cho said:
Since f(a) < a, f(a) is not an element of D.
To be clear, the book should have said "Consider the case when f(a) < a.".

Is it possible that f(a) is not a fixed point? If it were not a fixed point, it would be an element of D that is less than a.. But a is defined as the least element of D, so this is impossible.
 
Last edited:
Thank you very much!. In fact, the book did say "Consider the case when f(a) < a".
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top