- #1

QuantumCurt

Education Advisor

- 726

- 166

Why exactly is this? As Gauss's Law states, the sum of the flux across a closed surface must equal zero. Is it as simple as the idea that the net flux of a magnetic monopole would not equal zero? I'm a bit confused by this.

Flux is essentially the 'number' of field lines passing through a given surface. In a normal dipole, magnetic field lines essentially take the form of loops passing through the point from which they are emanating. With a magnetic monopole, magnetic field lines are radial and emanating straight out in every direction, correct? Using that fact, we can say that net flux is -not- equal to zero because field lines are not passing back through the surface?

I'm still a bit confused on this idea, and I haven't been able to find much in the searching that I've done. Could anyone provide any insight?