Why Does Increasing Minor Principal Stress Decrease von Mises Stress?

  • Thread starter Thread starter DTM
  • Start date Start date
  • Tags Tags
    Stress Von mises
Click For Summary
Increasing minor principal stress reduces von Mises stress due to the relationship between principal stresses and shear stress, which is critical for understanding failure in ductile materials. Specifically, von Mises stress is calculated based on the differences between principal stresses, and as the minor principal stress rises, the difference decreases, leading to lower von Mises stress and reduced failure likelihood. The discussion highlights that while shear stress is a primary factor in ductile failure, hydrostatic pressure does not contribute to this failure mode. The conversation also emphasizes the importance of understanding the historical and experimental context behind these formulas for deeper comprehension. Overall, grasping these concepts aids in the effective application of structural analysis in engineering.
DTM
Messages
75
Reaction score
9
TL;DR
Following the formula for von Mises stress, can you give an intuitive explanation of why the von Mises stress may go down when the minor principal stress goes up.
The formula for von Mises stress for a plane stress (2d) condition with no shear stress is:
1684346630404.png

So if S1 = 1000, S2 = 0 , then Svm = 1000.

If the S2 is now increased from 0 to 500. The von Mises stress will go from 1000 to 866

I understand this is how the equation works, but can someone give me an intuitive understanding of why, when you increase a minor principal stress, the von Mises stress (and the likelihood of failure) should go down?
 
Engineering news on Phys.org
VM stress is a measure of shear which is a function of the DIFFERENCES of the principal stresses. Don’t forget that the third principal stress is zero.
 
Last edited:
  • Like
Likes cherish, Chestermiller and DTM
Frabjous said:
VM stress is a measure of shear which is a function of the DIFFERENCES of the principal stresses. Don’t forget that the third principal stress is zero.
So differences in principal stresses is what makes ductile metals fail. That does make some sense and is somewhat intuitive. Thank you.
 
Here is a nice video about failure theories which includes Von Mises.



I recommend checking out almost all vídeos from that channel. It's fantastic.

This actually raises the question of why is it that shear stress is responsible for failure in ductile materials while hydrostatic pressure does not contribute. Often textbooks present this kind of information as FACTS because it is not really necessary to know the underlying reasons to be able to squeeze every drop of utility out of a structure by using math.
Since the amount of material to be covered during courses is huge, more often than not these kinds of details are left for the student to research on their own if interested or in separate courses. In my opinion, knowing the experimental and historical context within which such formulas are derived usually helps significantly in their understanding.

Here is some additional info about that hydrostatic pressure scenario and failure modes.

https://physics.stackexchange.com/q...l through shear,move dislocations in this way
 
  • Like
Likes DrClaude and DTM
Thread 'Local pressures in turbocharger housing?'
This is question for fluid mechanics. Static pressure in the exhaust manifold(turbo car engine) is usually 1.2 to 2.5 times higher than the boost pressure(intake manifold pressure).Boost pressure is around 1bar guage pressure(2bar absolute). Can the local static pressure somewhere inside a turbine housing ever be lower than atmospheric pressure, is this possible? here some links where CFD is used...

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
19K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K