Why Does Only n=4 Satisfy the Equation g(n)=n-2 in Euler's Totient Function?

  • Context: MHB 
  • Thread starter Thread starter Poirot1
  • Start date Start date
  • Tags Tags
    Function
Click For Summary
SUMMARY

Only n=4 satisfies the equation g(n)=n-2, where g is the Euler's Totient Function. The proof begins by establishing that g(n) is even for n > 2, leading to the conclusion that n must also be even. If n has no odd prime divisors, it directly follows that n=4. Further analysis shows that if n has odd prime factors, a contradiction arises, confirming that no other even n can satisfy the equation. The discussion highlights the importance of parity and prime factorization in understanding the behavior of the totient function.

PREREQUISITES
  • Understanding of Euler's Totient Function (g(n))
  • Basic knowledge of prime factorization
  • Familiarity with parity arguments in number theory
  • Concept of even and odd integers
NEXT STEPS
  • Study the properties of Euler's Totient Function in detail
  • Learn about parity arguments in number theory
  • Explore the implications of prime factorization on integer properties
  • Investigate other equations involving the Euler's Totient Function
USEFUL FOR

Mathematicians, students studying number theory, and anyone interested in the properties of the Euler's Totient Function and its applications in solving integer equations.

Poirot1
Messages
243
Reaction score
0
I am having difficulty with the following question. Show that only n=4 satisfies g(n)=n-2, where g is the euler totient function. Well,firstly g(4)=2=4-2.

Supposing that g(n)=n-2 for some n, we see that n is not 1 or 2, so that g(n) is even.

Therefore n=g(n)+2 is even. If we suppose that n has no odd prime divisors, then we find

that g(n)=n-2 implies n=4. So it remains to consider the case where n does have odd

prime divisors, and derive a contradiction. Can anyone furnish this elusive contradiction?

Thanks
 
Mathematics news on Phys.org
Re: another totient function problem.

Hmm, interesting problem. I believe I have a proof for when $n$ has at least one odd factor and is a multiple of $2^k$ for $k > 1$, but the missing case for $n = 2r$ with odd $r$ eludes me at this time. Also, $n$ must be even, since $\varphi{(n)}$ is always even for $n > 2$.​
 
Re: another totient function problem.

Bacterius said:
Hmm, interesting problem. I believe I have a proof for when $n$ has at least one odd factor and is a multiple of $2^k$ for $k > 1$, but the missing case for $n = 2r$ with odd $r$ eludes me at this time. Also, $n$ must be even, since $\varphi{(n)}$ is always even for $n > 2$.​

This question (and the similar questions I have been posting) are from past exams , and they should be of moderate difficulty. While I have no doubt your proofs are fine Bacterius, your arguments seem slighty too involved. I noted that Chisigma seemed to get the answer quickly on this thread http://www.mathhelpboards.com/f27/find-all-positive-integers-4526/, but he did not explain his reasoning.
 
Re: another totient function problem.

Poirot said:
This question (and the similar questions I have been posting) are from past exams , and they should be of moderate difficulty. While I have no doubt your proofs are fine Bacterius, your arguments seem slighty too involved. I noted that Chisigma seemed to get the answer quickly on this thread http://www.mathhelpboards.com/f27/find-all-positive-integers-4526/, but he did not explain his reasoning.

Actually the semi-proof I have in mind for this one is simple (it's a parity argument). But as it is now, it doesn't prove every case, unfortunately. If you mean the other thread, yes, my reasoning was a little long-winded on that one :confused:
 
Here it is, anyway. You've shown that $n$ must be even, and except for $n = 4$, it has at least one odd factor. Rewrite:

$$n = 2^k \cdot r ~ ~ \text{for some odd} ~ r > 2 ~ \text{and some} ~ k > 1$$
Then we have:

$$n - 2 = 2 \left ( 2^{k - 1} \cdot r - 1 \right ) ~ ~ \text{and} ~ ~ \varphi{(n)} = 2^{k - 1} \cdot \varphi{(r)}$$
Now recall $\varphi{(r)}$ is even since $r > 2$ and therefore we can let:

$$n - 2 = \varphi{(n)} ~ ~ \implies ~ ~ 2 \left ( 2^{k - 1} \cdot r - 1 \right ) = 2^{k - 1} \cdot \varphi{(r)} ~ ~ \implies ~ ~ 2^{k - 1} \cdot r - 1 = 2^{k - 1} \frac{\varphi{(r)}}{2}$$
Since $k > 1$, the LHS is odd, the RHS is even, and we have a contradiction.



So we are left with the case $k = 1$, that is, $2$ divides $n$ only once. I am stuck here :confused: There must be some simple trick though, since you said the problems are easy, so perhaps I am just missing something trivial. It would be enough that $\varphi{(r)}$ be divisible by $4$, I believe, so this would leave the case $n = 2p$ for some prime $p$ such that $p \equiv 3 \pmod{4}$ :rolleyes: (perhaps consider the equation modulo $4$? I need to sleep now, though)

 
Last edited:
Poirot said:
I am having difficulty with the following question. Show that only n=4 satisfies g(n)=n-2, where g is the euler totient function. Well,firstly g(4)=2=4-2.

Supposing that g(n)=n-2 for some n, we see that n is not 1 or 2, so that g(n) is even.

Therefore n=g(n)+2 is even. If we suppose that n has no odd prime divisors, then we find

that g(n)=n-2 implies n=4. So it remains to consider the case where n does have odd

prime divisors, and derive a contradiction. Can anyone furnish this elusive contradiction?
I have not read through all the replies, so I am not sure if this has already been done. You have shown that the prime factorisation of $n$ must be of the form $n = 2^k\prod_\alpha p_\alpha^{k_\alpha}$, where $k>0$ and the $p_\alpha$ are the odd prime factors of $n$, if any. Then $g(n) = 2^{k-1}\prod_\alpha p_\alpha^{k_\alpha-1}(p_\alpha - 1)$. But $\prod_\alpha p_\alpha^{k_\alpha-1}(p_\alpha - 1) \leqslant \prod_\alpha p_\alpha^{k_\alpha}$ (with equality occurring only when the product is empty!). Therefore $g(n) \leqslant \frac12n$ and hence $n-2 \leqslant \frac12n$, which only occurs when $n\leqslant 4.$
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 6 ·
Replies
6
Views
1K
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
9
Views
2K
Replies
4
Views
2K
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
6
Views
4K