- #1
sgstudent
- 739
- 3
https://ibb.co/dxwnMe
https://ibb.co/miNu1e
In these slides they show the partial pressure of the H2O gas not changing when the enternal pressure on the entire gas is increased. Why is this the case? I know it condenses to maintain the same partial pressure, but couldn't the partial pressure of the gas just increase proportionally to the increase in pressure?
According to Henry's law, K(H2O)x(H2O)=p(H2O), and since temperature remains the same K is constant. But couldn't x and p increase?
The other reason that I thought of was that H2O starts out at a pressure and temperature at a phase transition so it only has one degree of freedom, so since temperature is constant the pressure must remain the same as well. But the problem I have with this argument is that when I increase the overall pressure, if my partial pressures increase proportionally then would I be pushed up to a pressure where the gas liquefies? Such that all the vapour just liquefied and only gas remains?
https://ibb.co/miNu1e
In these slides they show the partial pressure of the H2O gas not changing when the enternal pressure on the entire gas is increased. Why is this the case? I know it condenses to maintain the same partial pressure, but couldn't the partial pressure of the gas just increase proportionally to the increase in pressure?
According to Henry's law, K(H2O)x(H2O)=p(H2O), and since temperature remains the same K is constant. But couldn't x and p increase?
The other reason that I thought of was that H2O starts out at a pressure and temperature at a phase transition so it only has one degree of freedom, so since temperature is constant the pressure must remain the same as well. But the problem I have with this argument is that when I increase the overall pressure, if my partial pressures increase proportionally then would I be pushed up to a pressure where the gas liquefies? Such that all the vapour just liquefied and only gas remains?