- #1

- 309

- 2

Given

f=ma, f/m=a

v=a(t), v=(f/m)(t)

Is it wrong to apply "v=(f/m)(t)" to situation where the force is generated by a motor? If no, then how come "v=(f/m)(t)" doesn't consider the motor's RPM? From my understanding, velocity should also be determined by the motor's rpm. For example, an electric bicycle whose motor produces 1000N @ 100 rpm (maximum) will be faster than an electric bicycle whose motor produces 1000N @ 1 rpm (maximum). However per v=(f/m)(t), the velocity of both cases are the same assuming m and t are the same.

f=ma, f/m=a

v=a(t), v=(f/m)(t)

Is it wrong to apply "v=(f/m)(t)" to situation where the force is generated by a motor? If no, then how come "v=(f/m)(t)" doesn't consider the motor's RPM? From my understanding, velocity should also be determined by the motor's rpm. For example, an electric bicycle whose motor produces 1000N @ 100 rpm (maximum) will be faster than an electric bicycle whose motor produces 1000N @ 1 rpm (maximum). However per v=(f/m)(t), the velocity of both cases are the same assuming m and t are the same.

Last edited: