Why entropy change is different

Click For Summary
The discussion focuses on the differences in calculating entropy change using two methods. Method 1 employs a Maxwell relation to derive the entropy change as an integral involving pressure and volume. Method 2 attempts to use the isothermal condition but is deemed incorrect due to a flawed starting equation. The error arises because, in an isothermal process for real gases, the change in internal energy (dU) is not zero, affecting the validity of the equation used. Understanding these distinctions is crucial for accurately calculating entropy changes in thermodynamic processes.
laser1
Messages
166
Reaction score
23
Homework Statement
see description
Relevant Equations
$$\Delta S = \int_i^f{\frac{dQ_{rev}}{T}}$$
1729507216659.png

I tried two different methods when solving this question and have no idea why.

Method 1:
Using the Maxwell relation of $$\left(\frac{\partial S}{\partial V}\right)_T=\left(\frac{\partial P}{\partial T}\right)_V=\frac{R}{V-b}$$ then integrating it, I get $$\Delta S = \int_i^f\frac{R}{V-b}dV$$

Method 2:
$$\Delta S = \int_i^f\frac{P}{T}dV$$ as isothermal implies that ##dQ=PdV##. Next, substituting in ##P## gives $$\int_i^f\left({\frac{R}{V-b}-\frac{a}{TV^2}}\right)dV$$
 
Physics news on Phys.org
laser1 said:
Homework Statement: see description
Relevant Equations: $$\Delta S = \int_i^f{\frac{dQ_{rev}}{T}}$$

View attachment 352504
I tried two different methods when solving this question and have no idea why.

Method 1:
Using the Maxwell relation of $$\left(\frac{\partial S}{\partial V}\right)_T=\left(\frac{\partial P}{\partial T}\right)_V=\frac{R}{V-b}$$ then integrating it, I get $$\Delta S = \int_i^f\frac{R}{V-b}dV$$

Method 2:
$$\Delta S = \int_i^f\frac{P}{T}dV$$ as isothermal implies that ##dQ=PdV##. Next, substituting in ##P## gives $$\int_i^f\left({\frac{R}{V-b}-\frac{a}{TV^2}}\right)dV$$
Method 2 is incorrect because your starting equation is incorrect.
 
Chestermiller said:
Method 2 is incorrect because your starting equation is incorrect.
##dQ=PdV## in isothermal process is incorrect? I am not sure why it is incorrect. Thanks
 
laser1 said:
##dQ=PdV## in isothermal process is incorrect? I am not sure why it is incorrect. Thanks
Because, in an isothermal process for a real gas, dU is not zero.
 
At first, I derived that: $$\nabla \frac 1{\mu}=-\frac 1{{\mu}^3}\left((1-\beta^2)+\frac{\dot{\vec\beta}\cdot\vec R}c\right)\vec R$$ (dot means differentiation with respect to ##t'##). I assume this result is true because it gives valid result for magnetic field. To find electric field one should also derive partial derivative of ##\vec A## with respect to ##t##. I've used chain rule, substituted ##\vec A## and used derivative of product formula. $$\frac {\partial \vec A}{\partial t}=\frac...