B Why is a simple pendulum not a perfect simple harmonic oscillator?

AI Thread Summary
A simple pendulum is not a perfect simple harmonic oscillator because its restoring force is not directly proportional to the angle of displacement, especially at larger angles. As the angle increases, the approximation of the restoring torque deviates from the ideal linear relationship. This leads to variations in the period of the pendulum, which can be better approximated using more complex formulas. In contrast, Christiaan Huygens's pendulum, which follows the tautochrone curve, maintains a constant period regardless of amplitude, qualifying it as a true simple harmonic oscillator. Understanding these distinctions is crucial for accurate physics modeling.
Huzaifa
Messages
40
Reaction score
2
Khan Academy claims that a simple pendulum not a perfect simple harmonic oscillator. Why is it so?
 
Physics news on Phys.org
Huzaifa said:
Khan Academy claims that a simple pendulum not a perfect simple harmonic oscillator. Why is it so?
Is the restoring torque exactly proportional to the angle of the pendulum? What happens if the angle gets big?
 
Because the restoring force is not exactly (negatively) proportional to the displacement.
 
  • Like
Likes olgerm and vanhees71
Yes, the simple pendulum is not a simple harmonic oscillator for reasons already explained. However, Christiaan Huygens's pendulum follows the tautochrone curve which is not as simple as a circle but has amplitude-independent period, i.e. is a simple harmonic oscillator.
 
  • Like
Likes Dadface, vanhees71, DaveE and 2 others
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Hello! I am generating electrons from a 3D gaussian source. The electrons all have the same energy, but the direction is isotropic. The electron source is in between 2 plates that act as a capacitor, and one of them acts as a time of flight (tof) detector. I know the voltage on the plates very well, and I want to extract the center of the gaussian distribution (in one direction only), by measuring the tof of many electrons. So the uncertainty on the position is given by the tof uncertainty...
Back
Top