Why is it important to classify circuits as series or parallel?

AI Thread Summary
Classifying circuits as series or parallel is crucial for understanding current flow and calculating equivalent resistance. Resistors are in series when the same current flows through each, forming a single path, while parallel circuits have multiple paths for current. A common mistake arises when misinterpreting circuit configurations, leading to incorrect calculations of equivalent resistance. The discussion highlights that not all circuits fit neatly into these categories, as seen in more complex arrangements like bridge circuits. Understanding these classifications is essential for accurate electrical analysis and problem-solving.
Sunwoo Bae
Messages
60
Reaction score
4
Homework Statement
The performance of the starter circuit in an automobile can be significantly degraded by a small amount of corrosion on a battery terminal. Figure 26-38a depicts a properly functioning circuit with a battery (12.5-V emf, 0,02 ohms internal resistance) attached via corrosion-free cables to a starter motor of resistance Rs = 0.15 ohms. Suppose that later, corrosion between a battery terminal and a starter cable introduces an extra series resistance of just Rc = 0.10 ohms into the circuit as suggested in figure. Let P_0 be the power delivered to the starter in the circuit free of corrosion, and let P be the power delivered to the circuit with corrosion. Determine P/P0.
Relevant Equations
Resistors in parallel/ Resistors in series
1643962436183.png


The answer sheet assumes that the resistors in both circuits are in series and that we need to use the equation Req = R1+R2+R3.. to find the Req in both cases. How come the resistors are in series, when there are multiple resistors in a single row?

Also, why does the following work yield the wrong answer? The answer should be 0.4, but I keep getting 0.63..
1643963209040.png


Thank you in advance!
 
Physics news on Phys.org
Sunwoo Bae said:
How come the resistors are in series,
Because the current flowing through all of them is the same.

You need to calculate the power delivered to "the starter". Is it the same as what you have calculated?
 
  • Like
Likes Steve4Physics
I'd like to add to what @cnh1995 has said.

Components are in series when connected one after the other, in a simple 'chain'. All the current leaving a component enters the next component in the chain. So the current is never split.

There is a mistake in the question.
Sunwoo Bae said:
... and let P be the power delivered to the circuit with corrosion.
It should say:
"... and let P be the power delivered to the starter in the circuit with corrosion."
 
Sunwoo Bae said:
How come the resistors are in series, when there are multiple resistors in a single row?
Uh ... 'cause that's the DEFINITION of series?
 
Hi Sunwoo Bae,

If the current flows through your components in a single loop or a single path then it is a series circuit.
If the current flows through your components in two or more loops or paths then it is a parallel circuit.

Think of it as if you are walking through a forest, if :
1- There's only one path = series (for all components along that path)
2- There are multiple paths = parallel (for the components on that are on different paths)

GJ
 
Guy Joel R said:
Hi Sunwoo Bae,

If the current flows through your components in a single loop or a single path then it is a series circuit.
If the current flows through your components in two or more loops or paths then it is a parallel circuit.

Think of it as if you are walking through a forest, if :
1- There's only one path = series (for all components along that path)
2- There are multiple paths = parallel (for the components on that are on different paths)
Hi @Guy Joel R. Welcome to PF!

In case you hadn't noticed, this is an old thread, dating back to February!

It may also be worth noting that not all circuits can be claasified as series or parallel or some combination of these - the classic example being a bridge circuit.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top