Mike_bb
- 198
- 20
Hello!
When I was proving that coefficient ##a## ##(s'=as)## is equal to ##1##, I noticed that ##(t_1' - t_2')^2## should be constant then the proof works but otherwise it doesn't.
##c^2(t_1'-t_2')^2 - (x_1'-x_2')^2 - (y_1'-y_2')^2 - (z_1'-z_2')^2=a(c^2(t_1-t_2)^2 - (x_1-x_2)^2 - (y_1-y_2)^2 - (z_1-z_2)^2)##
Can anyone explain why should ##(t_1'-t_2')^2## be constant?
Thanks!
When I was proving that coefficient ##a## ##(s'=as)## is equal to ##1##, I noticed that ##(t_1' - t_2')^2## should be constant then the proof works but otherwise it doesn't.
##c^2(t_1'-t_2')^2 - (x_1'-x_2')^2 - (y_1'-y_2')^2 - (z_1'-z_2')^2=a(c^2(t_1-t_2)^2 - (x_1-x_2)^2 - (y_1-y_2)^2 - (z_1-z_2)^2)##
Can anyone explain why should ##(t_1'-t_2')^2## be constant?
Thanks!