MHB Why is the no v kinematic equation helpful for solving kinematics problems?

  • Thread starter Thread starter jsspoon
  • Start date Start date
  • Tags Tags
    Kinematic
jsspoon
Messages
1
Reaction score
0
In the no v kinematic equation, $x={x}_{o}+{v}_{o}t+a{t}^{2}/2$, why do you have to solve $a{t}^{2}/2$ first before solving down completely?
 
Mathematics news on Phys.org
Hello and welcome to MHB! (Wave)

What do you mean by "solve $at^2/2$ first?"
 
Since t has the power of 2 for the acceleration, perhaps this is why the OP has stated "first" . . .?
Also, jsspoon, is there any specific question regarding the kinematic equation?
 
If by "solve" you simply mean "evaluate x for a given value of t", you do not need to evaluate [math]\frac{1}{2}at^2[/math]. You can do the calculations in any order. If you mean "solve for t for a given value of x", again there is nothing special about the [math]\frac{1}{2}at^2[/math] term- you can use the quadratic formula to solve.

And why was this called "no v kinematic equation"?
 
Last edited by a moderator:
HallsofIvy said:
If by "solve" you simply mean "evaluate x for a given value of t", you do not need to evaluate [math]\frac{1}{2}at^2[/math]. You can do the calculations in any order. If you mean "solve for t for a given value of x", again there is nothing special about the [math]\frac{1}{2}at^2[/math] term- you can use the quadratic formula to solve.

And why was this called "no v kinematic equation"?

The OP'er was one of my students, and we had labels for the four kinematic equations:
\begin{align*}
y&=y_0+v_{0y}t+a_y t^2/2 \qquad \text{no }v_y \\
\Delta y&=(v_y+v_{0y})t/2 \qquad \text{no }a_y \\
v_y&=v_{0y}+a_y t \qquad \text{no }y \\
v_y^2&=v_{0y}^2+2a_y \Delta y \qquad \text{no }t.
\end{align*}
Since, in kinematics, there are basically four players: $y, v_y, a_y, t$, there's one kinematic equation corresponding to which kinematic variable is missing. Knowing these four equations helps the students with the algebra, because they can just solve the one they need, and not necessarily have to plug one equation into another.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top