If \hat{p} is selfadjoint, then its expectation value in any state is real.
#5
alexgs
23
0
As in the last two posts, the most elegant and general way to see that <p> comes from the fact that p is a hermitian operator.
But if you only know about p in position space (i.e. p = -ih d/dx) then you can see that <p> is real by showing that <p> = <p>* (is this statement obvious?).
Do this by starting with the first equation in Ben Niehoff's post. Take the complex conjugate of both sides, i's become -i's, and psi -> psi* and psi* -> psi. Then with some manipulations (including an integration by parts) you can show that this expression is identical to the formula you started with, so <p>*=<p>.
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles.
Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated...
Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/
by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
I don't know why the electrons in atoms are considered in the orbitals while they could be in sates which are superpositions of these orbitals? If electrons are in the superposition of these orbitals their energy expectation value is also constant, and the atom seems to be stable!