Your question has pretty much been answered, but I'll sum things up.
If L1 and L2 are two perpendicular lines in the plane, and neither is vertical, then the product of their slopes is -1. This is not the same as saying the "slope between the two lines is -1". In more detail, if the equation of L1 is y = m1x + b1, and the equation of L2 is y = m2x + b2, then ##m_1 m_2 = -1##. Equivalently, ##m_1 = -\frac 1 {m_2}##.
We don't allow either line to be vertical, because vertical lines have a slopt that is undefined. Also, the equation of every vertical line is x = k. With regard to the two coordinate axes in the plane, the x-axis is horizontal: its slope is 0. the y-axis is vertical: its slope is undefined. The equation of the x-axis is y = 0. You could also write this as y = 0x + 0, which emphasizes the fact that the slope is 0. The equation of the y-axis is x = 0. Since the slope is undefined, the equation of the y-axis cannot be put into the form y = mx + b.