Catria
- 145
- 4
Homework Statement
Consider a theory with a \phi^6-scalar potential:
\mathcal{L} = \frac{1}{2}(\partial_\mu\phi)^2-\phi^2(\phi^2-1)^2.
Why is the solution to the equation of motion not a soliton?
Homework Equations
\phi''=\frac{\partial V}{\partial\phi}
The Attempt at a Solution
<br /> \phi'\phi''=\phi'\frac{dV}{d\phi}\\<br /> \frac{d}{dx}\left(\frac{\phi'^2}{2}\right)=\frac{dV}{dx}\\<br /> \phi'=\pm \sqrt{2V}\\<br /> \phi'=\phi-\phi^3\\<br /> \Rightarrow\phi(x)= \frac{e^x}{\sqrt{e^{2x}-C_1}}-\frac{e^{-x}}{\sqrt{e^{-2x}-C_2}}
Yet the solution on the last line is not a soliton. Why is that so?