MHB Why Must We Solve Linear Congruences in the Chinese Remainder Theorem?

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Linear
AI Thread Summary
The discussion centers on the necessity of solving the linear congruence \(M_j \cdot x \equiv c_j \pmod{m_j}\) in the proof of the Chinese Remainder Theorem (CRT). Participants highlight that this step is crucial as it leads to a unique solution modulo the product of the coprime integers. The proof involves defining \(M\) as the product of the moduli and \(M_j\) as the quotient of \(M\) divided by each modulus. Clarification is sought on why this specific congruence must be solved, with the explanation indicating that its significance will become clearer in subsequent steps of the proof. Understanding this step is essential for grasping the overall logic of the CRT.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hey! (Wasntme)

I am looking at the proof of the Chinese remainder theorem,which is:
Let $m_1,m_2, \dots, m_n$ be pairwise coprime.
Then the system $$\left\{\begin{matrix}
x \equiv c_1 \pmod {m_1}\\
\dots \dots\\
x \equiv c_n \pmod {m_n}
\end{matrix}\right.$$

is equivalent with one linear congruence of the form $x \equiv c \pmod {m_1 \dots m_n} $ for a ($\text{ unique } \pmod {m_1 \dots m_n} c$).

At the proof,we consider the numbers:

$M=m_1 \cdots m_n $
$M_j=\frac{M}{m_j}, 1 \leq j \leq n$

$\forall j$ we solve the linear congruence

$$M_j \cdot x \equiv c_j \pmod{m_j}$$

But...why do we have to solve this linear congruence? (Thinking)
 
Mathematics news on Phys.org
evinda said:
Hey! (Wasntme)

I am looking at the proof of the Chinese remainder theorem,which is:
Let $m_1,m_2, \dots, m_n$ be pairwise coprime.
Then the system $$\left\{\begin{matrix}
x \equiv c_1 \pmod {m_1}\\
\dots \dots\\
x \equiv c_n \pmod {m_n}
\end{matrix}\right.$$

is equivalent with one linear congruence of the form $x \equiv c \pmod {m_1 \dots m_n} $ for a ($\text{ unique } \pmod {m_1 \dots m_n} c$).

At the proof,we consider the numbers:

$M=m_1 \cdots m_n $
$M_j=\frac{M}{m_j}, 1 \leq j \leq n$

$\forall j$ we solve the linear congruence

$$M_j \cdot x \equiv c_j \pmod{m_j}$$

But...why do we have to solve this linear congruence? (Thinking)

The procedure is explained here...

http://mathhelpboards.com/number-theory-27/applications-diophantine-equations-6029.html#post28283

Kind regards

$\chi$ $\sigma$
 
chisigma said:
The procedure is explained here...

http://mathhelpboards.com/number-theory-27/applications-diophantine-equations-6029.html#post28283

Kind regards

$\chi$ $\sigma$

I still haven't understood why we have to solve the system $M_j \cdot x \equiv c_j \pmod {m_j}$... (Sweating)
 
evinda said:
I still haven't understood why we have to solve the system $M_j \cdot x \equiv c_j \pmod {m_j}$... (Sweating)

Hey! (Emo)

It's the first step in the proof...
The reason why we're solving that system will become apparent in a later step where everything cancels nicely. (Nerd)
 
I like Serena said:
Hey! (Emo)

It's the first step in the proof...
The reason why we're solving that system will become apparent in a later step where everything cancels nicely. (Nerd)

Ok..thank you very much! :)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top