MHB Why ODE Linear? Initial Value Problem Explanation

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Linear Ode
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

I am looking at initial value problems for ordinary differential equations.Let $a,b, \ a<b, \ f: [a,b] \times \mathbb{R} \to \mathbb{R}$ function and $y_0 \in \mathbb{R}$.We are looking for a $y: [a,b] \to \mathbb{R}$ such that$$(1)\left\{\begin{matrix}
y'(t)=f(t,y(t))\\
y(a)=y_0
\end{matrix}\right.$$Each function $y \in C^{1}[a,b]$ that satisfies the differential equation of $(1)$ and the initial value $y(a)=y_0$ is called solution of the initial value problem $(1)$.Special caseLet $f$ be a polynomial of degree $1$ as for $y$. Then the corresponding ODE is called linear, and the problem $(1)$ is written as:$$(2)\left\{\begin{matrix}
y'(t)=p(t)y(t)+q(t), a \leq t \leq b\\
y(a)=y_0
\end{matrix}\right.$$It holds that $deg_y q(t)< deg_y y(t)=1 \Rightarrow q(y)=\text{ constant }$, right?

But, if so then why is in this case the ODE linear? (Thinking)
 
Physics news on Phys.org
evinda said:
...
It holds that $deg_y q(t)< deg_y y(t)=1 \Rightarrow q(y)=\text{ constant }$, right?

But, if so then why is in this case the ODE linear? (Thinking)
No. It is true that
degy q(t)< degy y(t)
But if
q(t) = et2
the degy q(t) = 0 which is less than 1.

Also the linearity of the ODE has nothing to do with q. If the exponent for y and all of the derivative in the ODE [y, y', y'', y''', ...] are 1, then the ODE is called linear. That is, it is linear in y and its derivatives.
 
John Harris said:
No. It is true that
degy q(t)< degy y(t)
But if
q(t) = et2
the degy q(t) = 0 which is less than 1.

Also the linearity of the ODE has nothing to do with q. If the exponent for y and all of the derivative in the ODE [y, y', y'', y''', ...] are 1, then the ODE is called linear. That is, it is linear in y and its derivatives.

Nice! Thank you! (Smile)
 
I have the equation ##F^x=m\frac {d}{dt}(\gamma v^x)##, where ##\gamma## is the Lorentz factor, and ##x## is a superscript, not an exponent. In my textbook the solution is given as ##\frac {F^x}{m}t=\frac {v^x}{\sqrt {1-v^{x^2}/c^2}}##. What bothers me is, when I separate the variables I get ##\frac {F^x}{m}dt=d(\gamma v^x)##. Can I simply consider ##d(\gamma v^x)## the variable of integration without any further considerations? Can I simply make the substitution ##\gamma v^x = u## and then...

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K