Why Supersymmetry? Because of Deligne's theorem - Comments

  • Context: Insights 
  • Thread starter Thread starter Urs Schreiber
  • Start date Start date
  • Tags Tags
    Supersymmetry Theorem
Click For Summary
SUMMARY

The forum discussion centers on the implications of Deligne's theorem in relation to supersymmetry (SUSY) and its relevance to the Standard Model of particle physics. Participants debate whether Deligne's theorem, particularly its application to the Poincaré group and Kloosterman sums, supports the necessity of SUSY. Key points include the assertion that non-supersymmetric theories like the Standard Model do not violate Deligne's theorem, as ordinary groups can be considered special cases of super-groups. The conversation also touches on the motivations for SUSY and critiques its current standing in theoretical physics.

PREREQUISITES
  • Understanding of Deligne's theorem and its implications in theoretical physics.
  • Familiarity with the Poincaré group and its irreducible unitary representations.
  • Knowledge of supersymmetry (SUSY) and its role in particle physics.
  • Basic concepts of quantum field theory (QFT) and tensor categories.
NEXT STEPS
  • Research the implications of Deligne's theorem on Kloosterman sums and its applications in number theory.
  • Study the irreducible unitary representations of the Poincaré group as discussed in Weinberg's texts.
  • Explore the current status and critiques of supersymmetry in high-energy physics.
  • Investigate the role of tensor categories in quantum field theory and their mathematical foundations.
USEFUL FOR

The discussion is beneficial for theoretical physicists, graduate students in particle physics, and researchers interested in the foundations of quantum field theory and the ongoing debates surrounding supersymmetry.

Urs Schreiber
Science Advisor
Insights Author
Gold Member
Messages
573
Reaction score
676
Urs Schreiber submitted a new PF Insights post

Why Supersymmetry? Because of Deligne's theorem.

Supersymmetry.png


Continue reading the Original PF Insights Post.
 
Last edited by a moderator:
  • Like
Likes   Reactions: dextercioby, JorisL, fresh_42 and 3 others
Physics news on Phys.org
Is Deligne's theorem here the same one, or related to, as the one that is used to help solve the twin prime conjecture?
 
[URL='https://www.physicsforums.com/insights/author/urs-schreiber/' said:
Urs Schreiber[/URL]]This is a powerful formulation of spacetime geometry that regards spacetime symmetry groups as more fundamental than spacetime itself.
Heh, well, in ancient history (when s.p.r. was a great place and you were a moderator) you once rejected a post of mine because I suggested that spacetime itself is not fundamental. I'm glad to see you've (apparently?) changed your mind. :biggrin:

A small quibble about 1 point in your article:
if one computes, [...] the irreducible unitary representations of the Poincaré group, then one finds that these are labeled by exactly the quantum numbers of elementary particles seen in experiment, mass and spin, and helicity for massless particles.
IIUC, the word "exactly" is not correct for massless particles -- one must manually impose a constraint that the representation should be trivial wrt the continuous spin degrees of freedom (i.e., the 2 translation-like generators in the E(2) little group for massless representations). Weinberg vol 1 covers this.

Separately, I have a question about Klein/Cartan geometry. Are there already any extensions of that framework for the case where G/H is a semigroup? I'm thinking here about how one might embed temporal casuality into physical theories in a more fundamental way, rather than being imposed by hand as is currently the case in GR and QFT.

Cheers.
 
klotza said:
Is Deligne's theorem here the same one, or related to, as the one that is used to help solve the twin prime conjecture?
What was used in the discussion of the twin prime conjecture is Deligne's theorem on extending the Weil bound on Kloosterman sums. This is unrelated to the theorem on Tannakian reconstruction of tensor categories that the above entry is referring to.
Pierre Deligne proved many important theorems.
 
strangerep said:
[URL='https://www.physicsforums.com/insights/author/urs-schreiber/' said:
Urs Schreiber[/URL]]This is a powerful formulation of spacetime geometry that regards spacetime symmetry groups as more fundamental than spacetime itself.
Heh, well, in ancient history (when s.p.r. was a great place and you were a moderator) you once rejected a post of mine because I suggested that spacetime itself is not fundamental. I'm glad to see you've (apparently?) changed your mind. :biggrin:

A small quibble about 1 point in your article:
if one computes, [...] the irreducible unitary representations of the Poincaré group, then one finds that these are labeled by exactly the quantum numbers of elementary particles seen in experiment, mass and spin, and helicity for massless particles.
IIUC, the word "exactly" is not correct for massless particles -- one must manually impose a constraint that the representation should be trivial wrt the continuous spin degrees of freedom (i.e., the 2 translation-like generators in the E(2) little group for massless representations). Weinberg vol 1 covers this.

Separately, I have a question about Klein/Cartan geometry. Are there already any extensions of that framework for the case where G/H is a semigroup? I'm thinking here about how one might embed temporal casuality into physical theories in a more fundamental way, rather than being imposed by hand as is currently the case in GR and QFT.

Cheers.
Regarding the ancient history: I don't remember the contribution you are referring to, maybe you could remind me.

Regarding the quibble: True, I have swept some technical fine print under the rug, in order to keep the discussion informal. Also, either way this fine print does not affect the point of the article.

Regarding Cartan geometry for semigroups: I haven't seen this discussed anywhere. It seems plausible that one could generalize the definition to that case in a fairly straightforward way, but I haven't seen it considered.
 
[URL='https://www.physicsforums.com/insights/author/urs-schreiber/']Urs Schreiber[/URL] said:
Regarding the ancient history: I don't remember the contribution you are referring to, maybe you could remind me.
Oh, I didn't keep a copy. At the time, it was all too hard to convince anyone that symmetries are more fundamental than spacetime. Nowadays, I sense that it's a more respectable point of view.

Anyway, I have another question about your article. You talk about
[URL='https://www.physicsforums.com/insights/author/urs-schreiber/' said:
Urs Schreiber[/URL]]The case of interest to us here is that of tensor categories which are ##{\mathbb C}##-linear, hence where the spaces of particle interaction vertices are complex vector spaces.
What precisely do you mean by "spaces of particle interaction vertices"? In the context of ordinary QFT, I imagine tensoring together the Fock spaces of the various elementary fields so that (e.g., in QED) one can express interaction terms like ##\bar \psi \gamma_\mu A^\mu \psi##. But such Fock-like spaces are known to be incapable of accommodating nontrivial interacting QFTs (according to Haag's thm, etc). So perhaps you mean something else?
 
Last edited:
Nice article!
 
strangerep said:
Heh, well, in ancient history (when s.p.r. was a great place and you were a moderator) you once rejected a post of mine because I suggested that spacetime itself is not fundamental. I'm glad to see you've (apparently?) changed your mind. :biggrin:

A small quibble about 1 point in your article:
IIUC, the word "exactly" is not correct for massless particles -- one must manually impose a constraint that the representation should be trivial wrt the continuous spin degrees of freedom (i.e., the 2 translation-like generators in the E(2) little group for massless representations). Weinberg vol 1 covers this.

Separately, I have a question about Klein/Cartan geometry. Are there already any extensions of that framework for the case where G/H is a semigroup? I'm thinking here about how one might embed temporal casuality into physical theories in a more fundamental way, rather than being imposed by hand as is currently the case in GR and QFT.

Cheers.
s.p.r? is that a usenet group?
 
  • Like
Likes   Reactions: arivero
MathematicalPhysicist said:
s.p.r? is that a usenet group?
sci.physics.research
 
  • #10
strangerep said:
sci.physics.research
Are researchers in physics still using these usenet groups?

I think that nowadays with stackexchange and PF that why would anyone still use those primitive forums.
I know that they still exist.
 
  • #11
Suppose that the Standard Model, as we know it, is the final theory of "everything". Since it is not supersymmetric, it must violate some assumptions of the Deligne's theorem. My question is: what these assumptions (violated by the Standard Model) are?
 
  • #12
Demystifier said:
Suppose that the Standard Model, as we know it, is the final theory of "everything". Since it is not supersymmetric, it must violate some assumptions of the Deligne's theorem. My question is: what these assumptions (violated by the Standard Model) are?
How can this possibly be if it doesn't include gravity? (do you refer to SM of particle physics?).
 
  • #13
I'm currently doing my PhD in theoretical particle physics. I understand SUSY, the Poincare Group and Wigner's Classification quite good. I've read the article twice. However I have no clue what the author is talking about.

To me it reads like the usual SUSY propaganda: SUSY must be correct, because otherwise string theory is in deep trouble. Thus let's find some good sounding reasons why SUSY is inevitable.

This article seems motivated by the current doomsday mood in the HEP community. Everyone was certain that SUSY shows up at the LHC, just as everyone was certain that SUSY shows up at LEP or the Tevatron. (And sure, the 100 TeV collider certainly will find SUSY.) Howecer, there is no experimental evidence for anything beyond the standard model and certainly no signal that hints towards SUSY particles. The fact that the LHC did not find any SUSY particles is a big problem for SUSY fans, because now one main motivation is no longer valid (SUSY as a solution of the naturalness problem).

Therefore, SUSY isn't very attractive anymore. There are four main motivations for SUSY:

Solving the naturalness problem (Higgs mass problem)
Unfication of the three standard model forces. However this argument is rather weak, because any BSM theory with as many free paramters as SUSY can be easily fitted such that the couplings unify. In addition, it's quite unlikely that a big unified symmetry (SO(10), E6) breaks directly to SU(3)xSU(2)xU(1). Instead an intermediate symmetry group between the unifcation and the standard model group, like the Pati-Salam group possibly exists. If this ist the case the couplings ALWAYS unify with SUSY or without.
Solving the Dark Matter problem. This argument is rather weak, too. Any expansion of the standard model with additional particles contains a dark matter candidate if we impose an additional discrete symmtry to guarantee its stability, which is what SUSY does.
The Coleman-Mandula-Theorem and the argument that SUSY is the only possibility to mix spacetime and internal symmetries. I've also problems with this argument, but this comment is already too long. In short, I don't think that SUSY helps to understand why fermions and bosons behave so differently (which is one of the biggest mysteries in modern physics), because this difference is simply the assumption at the start of SUSY. Thus I don't see which theoretical problem SUSY solves or why the proposed "unification" of spacetime and internal symmetries helps in any way.

Now the first one is no longer valid. The second and third are very weak arguments anyway. Thus it is not suprising that many SUSY researches are stopping to work on SUSY topics now. However there is a group of researches that can not stop and thus needs to find new motivation for SUSY: string theorists.

This is how we end with an article like this. Lots of highbrow mathematics and complicated wording, which impresses students and laymans and leaves the impression that SUSY is inevitable.
 
  • Like
Likes   Reactions: arivero, ohwilleke and kodama
  • #14
Demystifier said:
Suppose that the Standard Model, as we know it, is the final theory of "everything". Since it is not supersymmetric, it must violate some assumptions of the Deligne's theorem.

No. Deligne's theorem says, very very roughly, that under certain conditions particles must have some super-group of symmetries. However, for the purposes of this theorem, an ordinary group counts as a special case of a super-group, namely one that has no transformations mixing fermions and bosons. So a non-supersymmetric theory, like the Standard Model, is allowed. Urs explained it this:

Notice here that a super-group is understood to be a group that may contain odd-graded components. So also an ordinary group is a super-group in this sense. The statement does not say that spacetime symmetry groups need to have odd supergraded components (that would evidently be false). But it says that the largest possible class of those groups that are sensible as local spacetime symmetry groups is precisely the class of possibly-super groups. Not more. Not less.
 
  • Like
Likes   Reactions: ohwilleke, Demystifier, Greg Bernhardt and 2 others
  • #15
strangerep said:
[URL='https://www.physicsforums.com/insights/author/urs-schreiber/']Urs Schreiber[/URL] said:
Regarding the ancient history: I don't remember the contribution you are referring to, maybe you could remind me.
Oh, I didn't keep a copy. At the time, it was all too hard to convince anyone that symmetries are more fundamental than spacetime. Nowadays, I sense that it's a more respectable point of view.

Anyway, I have another question about your article. You talk about
[URL='https://www.physicsforums.com/insights/author/urs-schreiber/' said:
Urs Schreiber[/URL]]The case of interest to us here is that of tensor categories which are ##{mathbb C}##-linear, hence where the spaces of particle interaction vertices are complex vector spaces.
What precisely do you mean by "spaces of particle interaction vertices"? In the context of ordinary QFT, I imagine tensoring together the Fock spaces of the various elementary fields so that (e.g., in QED) one can express interaction terms like ##bar psi gamma_mu A^mu psi##. But such Fock-like spaces are known to be incapable of accommodating nontrivial interacting QFTs (according to Haag's thm, etc). So perhaps you mean something else?
Technically what I mean are the spaces of "intetwiners" between representations. In physics these are the possible spaces of interaction vertices.

For instance the space of interaction vertices for two spinors merging to become a vector boson include the linear maps which in components are given by the Gamma-matrices, as familiar from QCD. But there is an arbitrary prefactor in front of the Gamma-matrix, the "coupling constant", and hence the space of interaction vertices is in fact a vector space.
 
  • #16
MathematicalPhysicist said:
strangerep said:
Heh, well, in ancient history (when s.p.r. was a great place and you were a moderator) you once rejected a post of mine because I suggested that spacetime itself is not fundamental. I'm glad to see you've (apparently?) changed your mind. :biggrin:

A small quibble about 1 point in your article:
IIUC, the word "exactly" is not correct for massless particles -- one must manually impose a constraint that the representation should be trivial wrt the continuous spin degrees of freedom (i.e., the 2 translation-like generators in the E(2) little group for massless representations). Weinberg vol 1 covers this.

Separately, I have a question about Klein/Cartan geometry. Are there already any extensions of that framework for the case where G/H is a semigroup? I'm thinking here about how one might embed temporal casuality into physical theories in a more fundamental way, rather than being imposed by hand as is currently the case in GR and QFT.

Cheers.
s.p.r? is that a usenet group?
The formatting here in the comment section tends to come out differently from what the people editing a comment expect. I think in the message by "Mathematical Physicist" above in fact everything except the last line is meant as a blockquote from a previous comment, the only line that "Mathematical Physicist" meant to add is

"s.p.r? is that a usenet group?"

to which the answer is: Yes. it is short for "sci.physics.research". Nowadays it exists as a GoogleGroup https://groups.google.com/forum/#!forum/sci.physics.research .
 
  • #17
Demystifier said:
Suppose that the Standard Model, as we know it, is the final theory of "everything". Since it is not supersymmetric, it must violate some assumptions of the Deligne's theorem. My question is: what these assumptions (violated by the Standard Model) are?
No, the entry comments on this point in the paragraph starting with the sentence:

"Notice here that a super-group is understood to be a group that _may_ contain odd-graded components." But it need not.

A super-group is a group in super-geometry. It's underlying space may have add-graded coordinates, but it need not. In this terminology, an ordinary group is also a super-group, just one where the super-odd piece happens to be trivial.

It's all explained in the article, but since you missed it, I'll say it again: the theorem of course does not say that ordinary groups are ruled out, that would clearly be wrong. Instead the force of the theorem is to say that the largest class of admissible groups is that of super-groups (i.e. ordinary and possibly super groups), instead of, say, the even larger class of non-commutative groups or what not.
 
  • Like
Likes   Reactions: Demystifier
  • #18
unknown1111 said:
To me it reads like the usual SUSY propaganda: SUSY must be correct, because otherwise string theory is in deep trouble. Thus let's find some good sounding reasons why SUSY is inevitable.

This article seems motivated by the current doomsday mood in the HEP community.

No. The article presents a fact that was discovered by somebody with no interest in supersymmetry, either way.
unknown1111 said:
There are four main motivations for SUSY:

Most of what you quote are standard arguments for unbroken low-energy susy. As explained in the article right at the beginning, this is not what it is about. Remains the Coleman-Mandula theorem, on which the article comments in some detail towards the end.

Try to read it. Try to read it without ideology. It is an exposition of a mathematical theorem, which you may try to understand and accept, but which does not go away by becoming angry at it.
 
  • Like
Likes   Reactions: Ravi Mohan and Greg Bernhardt
  • #19
Nice article!

You referred to https://ncatlab.org/nlab/show/unitary+representation+of+the+Poincaré+group where you could delete the remark by John Baez.

Indeed, Wigner had classified all irreducible unitary representations of the Poincare group, including the unphysical ones. The physical ones are almost characterized by causality requirements, but to exclude zero mass continuous spin (which is causal but apparently not realized in Nature) they should rather be characterized by the requirement that one can create from them a free Wightman field theory.
 
  • #20
Thanks, Arnold. That nLab entry is waiting for somebody to take a little care of it. It was started by John and/or people discussing with him long time back,but the editing was abandoned before a stable version was reached. Might you have 10 minutes to spare on this? It would be greatly appreciated! Just hit "edit" at the bottom of the entry. The syntax is simple and should be self-explanatory.
 
  • #21
For the record, to the extent that I know of, there is no formal treatment in the literature of the irreducible representations of the universal cover of the restricted Poincaré group in the language of rigged Hilbert spaces, therefore this part right here in blue could count as original/unpublished material.

upload_2016-8-22_22-28-52.png
upload_2016-8-22_22-28-52.png
 
Last edited:
  • #22
[URL='https://www.physicsforums.com/insights/author/urs-schreiber/']Urs Schreiber[/URL] said:
Thanks, Arnold. That nLab entry is waiting for somebody to take a little care of it. It was started by John and/or people discussing with him long time back,but the editing was abandoned before a stable version was reached. Might you have 10 minutes to spare on this? It would be greatly appreciated! Just hit "edit" at the bottom of the entry. The syntax is simple and should be self-explanatory.
I tried to edit the Poincae page but it is now in a state of limbo, without having accepted my edit or allowing me to edit them further. Maybe someone authorized to manage n-lab can recover my changes and place them there.
 
  • #23
Thanks for your efforts! But oh dear, what may have happened there? I don't know. What I see is that the following paragraph was added to the entry:

"Wigner classified all irreducible unitary representations of the restricted Poincare group, including the unphysical ones. The latter cannot be used to define a free quantum field theory satisfying the Wightman axioms. Those that can are the physical ones and are characterized by a nonnegative real mass and a nonnegative half-integral spin; the zero component of the momentum has a nonnegative spectrum. Many of these are realized by paticles occurring in Nature, though not as ‘elementary particles’‘ but as bound states (in a suitable approximation, e.g., QCD). From the point of view of representation theory, the center of mass of a bound state behavs just like an elementary particle. Thus elementary is meant in this generalized sense."

Did you add more than this? If so, maybe hitting "back" on your browser still recovers it?
 
  • #24
strangerep said:
Heh, well, in ancient history (when s.p.r. was a great place and you were a moderator) you once rejected a post of mine because I suggested that spacetime itself is not fundamental. I'm glad to see you've (apparently?) changed your mind. :biggrin:

A small quibble about 1 point in your article:
IIUC, the word "exactly" is not correct for massless particles -- one must manually impose a constraint that the representation should be trivial wrt the continuous spin degrees of freedom (i.e., the 2 translation-like generators in the E(2) little group for massless representations). Weinberg vol 1 covers this.

Separately, I have a question about Klein/Cartan geometry. Are there already any extensions of that framework for the case where G/H is a semigroup? I'm thinking here about how one might embed temporal casuality into physical theories in a more fundamental way, rather than being imposed by hand as is currently the case in GR and QFT.

Cheers.

In what sense do you mean that G/H is a semi-group? the only way I can think you want to define the multiplication is by saying xHyH=xyH. That would impose the condition of H being a normal subgroup and therefore G/H not only a semigroup but a group.
 
  • #25
carlosdelamora said:
In what sense do you mean that G/H is a semi-group? the only way I can think you want to define the multiplication is by saying xHyH=xyH. [...]
No, that's not what I have in mind. But to explain properly would require many pages (hence hijacking this thread) of unpublished work (hence not appropriate on PF).
 
  • #26
[URL='https://www.physicsforums.com/insights/author/urs-schreiber/']Urs Schreiber[/URL] said:
No. The article presents a fact that was discovered by somebody with no interest in supersymmetry, either way.

Most of what you quote are standard arguments for unbroken low-energy susy. As explained in the article right at the beginning, this is not what it is about. Remains the Coleman-Mandula theorem, on which the article comments in some detail towards the end.

Try to read it. Try to read it without ideology. It is an exposition of a mathematical theorem, which you may try to understand and accept, but which does not go away by becoming angry at it.

so any specific and testable predictions if susy is well motivated due to Deligne theorem, even as lhc has ruled out low energy susy?
 
  • #27
kodama said:
so any specific and testable predictions if susy is well motivated due to Deligne theorem, even as lhc has ruled out low energy susy?

Supergravity predicts improvements to fits of models of cosmic inflation to the latest data:

The models of cosmic inflation that best fit the Planck satellite data are "plateau models" such as Starobinsky inflation aka ##R^2## inflation. See figure 12, and table 6 in
  • Planck Collaboration, Planck 2015 results. XX. Constraints on inflation (arXiv:1502.02114)
As made explicit below table 6, there is preference for Starobinsky inflation in the data, even if not significant. However, in
  • Alex Kehagias, Azadeh Moradinezhad Dizgah, Antonio Riotto, "Comments on the Starobinsky Model of Inflation and its Descendants", Phys. Rev. D 89, 043527 (2014) (arXiv:1312.1155)
it is argued that other models of Plateau inflation are actually physically equivalent to Starobinsky inflation.

Starting with
  • S. Cecotti, "Higher derivative supergravity Is equivalent to standard supergravity coupled to matter", Phys. Lett. B 190, 86 (1987).
it has been argued that Starobsinky inflation prefers being embedded into supergravity. This was reinforced with the Planck2013 data. On p. 17 of the above arXiv:1502.02114 it says:

https://dl.dropboxusercontent.com/u/12630719/Planck2015OnStarobisnky.JPG

For review see
  • Fotis Farakos, Alex Kehagias, A. Riotto, "On the Starobinsky Model of Inflation from Supergravity", Nucl. Phys. B 876, 187 (2013) (arXiv:1307.1137)
and

  • John Ellis, "Planck-Compatible Inflationary Models", talk 2013 (pptx)
A particularly striking supergravity prediction has been reported by Dalianis and Farakos:

While models of Plateau inflation fit the Planck satellite data best, to do so they need to start inflation from a relatively large initial homogeneous patch of spacetime of diameter the oder of a few thousand Planck lengths. This leaves the problem of why the universe before inflation was homogeneous on this scale. Now in
it is argued that when embedding the model into supergravity, that this problem goes away in that the required initial homogeneous patch shrinks to the order of one Planck length (see equations (4.11) and (4.13)).

A review of this result appeared recently presented here
  • Ioannis Dalianis, "Features and implications of the plateau inflationary potentials", Planck 2015 conference contribution (arXiv:1602.05026)
 
Last edited by a moderator:
  • Like
Likes   Reactions: JorisL and dextercioby
  • #28
[URL='https://www.physicsforums.com/insights/author/urs-schreiber/']Urs Schreiber[/URL] said:
Supergravity predicts improvements to fits of models of cosmic inflation to the latest data:

thanks for bringing this to my attention but LQC without SUSY also offers improved fits to data - if you want i can post papers from Ahsketar et al. and LQC does not make use of SUSY
 
Last edited by a moderator:
  • #29
kodama said:
thanks for bringing this to my attention but LQC without SUSY also offers improved fits to data - if you want i can post papers from Ahsketar et al. and LQC does not make use of SUSY

Possibly you are thinking of "Quantum gravity in the sky" (arXiv:1608.04228). This proposes two principles to fit LQC to PLANCK satellite data. Now LQC is, much like MOND, a formula without a theory. This may be of interest, but it does not seem to "offer improved fits to data".

Moreover, there remains the issue with the Starobinsky model that I mentioned in #27: in plain gravity it needs an overly large initial homegenous patch to work in the first place.
 
  • Like
Likes   Reactions: Greg Bernhardt
  • #30
[URL='https://www.physicsforums.com/insights/author/urs-schreiber/']Urs Schreiber[/URL] said:
Possibly you are thinking of "Quantum gravity in the sky" (arXiv:1608.04228).

yes

[URL='https://www.physicsforums.com/insights/author/urs-schreiber/']Urs Schreiber[/URL] said:
This proposes two principles to fit LQC to PLANCK satellite data. Now LQC is, much like MOND, a formula without a theory. .

yeah that sounds about right /s
 

Similar threads

  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 6 ·
Replies
6
Views
5K
  • Sticky
  • · Replies 30 ·
2
Replies
30
Views
15K
  • Sticky
  • · Replies 6 ·
Replies
6
Views
9K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 24 ·
Replies
24
Views
5K
  • Sticky
  • · Replies 6 ·
Replies
6
Views
9K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 14 ·
Replies
14
Views
5K