Insights Why the Quantum | A Response to Wheeler's 1986 Paper - Comments

Click For Summary
The discussion centers on the interpretation of quantum mechanics, particularly in relation to EPR-type experiments and the implications of conservation laws and measurement discreteness. It highlights that the quantum weirdness arises from a collapse-like assumption when measuring a fermion's spin, suggesting that the measurement outcome defines the spin direction. Participants explore the nature of quantum correlations and how they differ from classical expectations, emphasizing that the conservation of angular momentum is frame-independent and cannot be explained by hidden variables. The conversation also touches on the need for a more natural set of postulates in quantum theory, akin to those in classical physics. Overall, the insights challenge traditional views and propose a deeper understanding of quantum mechanics.
  • #31
I said something that may have contributed to vanhees71’s confusion. I said these states have no preferred direction for a conserved vector quantity. Well since the conserved vector is null that’s a stupid thing to say. I should have said Alice and Bob are always measuring non-zero L that always cancel when co-aligned. So when not co-aligned we expect fractional results from either at minimum. Instead these two vectors are always the same length such that either cancels the other on average. That’s the sense in which we have conservation of a vector quantity with no preferred direction.

Edit: See my detailed explanation in #33 below.
 
Last edited:
Physics news on Phys.org
  • #32
Yes, but you'll get zero by measuring the angular momentum in any direction. I guess, I now get the problem you want to discuss. Of course, you can for each single decay only measure the angular momentum in one direction, not in three linearly independent ones since angular-momentum components at different directions are not compatible to each other.

Now all the quibbles with this gets resolved, when you take the minimal statistical interpretation seriously and accept that the meaning of quantum states are probabilities for the outcome of measurements according to Born's rule and nothing else (and you cannot know more, if QT is correct, which I assume due to the lack of any contradictions of experience to the predictions of QT): To verify the probabilistic predictions of quantum theory you have to consider an ensemble of very many decaying particles and measure the angular-momentum components in three linearly independent on a sufficiently large subensemble for each direction since you can only measure one component for each single event. The prediction of QT is a 1:1 correlation between the outcomes of A's and B's measurement of the spin components of the decay particles in the same direction, and this holds true for any direction, and this is in full accordance with angular-momentum conservation. Of course the outcome of these measurements is completely random, but the correlation holds strictly true (with 100% probability).

As in all cases of apparent "quantum weirdness" I know, the minimal statistical interpretation resolves the weirdness. The only weirdness remaining is due to our classically trained prejudices about the behavior of objects, but these prejudices are due to our everyday experience with very much coarse-grained macroscopic observables, which are in fact averaging over many microscopic degrees of freedom, which leads to an apparent classical behavior, but in fact it's just due to the sufficiency of coarse-grained macroscopic observables to describe macroscopic systems. On these macroscopic scales all the quantum fluctuations (in the sense of statistical processes) are irrelevant to the accuracy of our everyday observations.
 
  • #33
vanhees71 said:
Yes, but you'll get zero by measuring the angular momentum in any direction. I guess, I now get the problem you want to discuss. Of course, you can for each single decay only measure the angular momentum in one direction, not in three linearly independent ones since angular-momentum components at different directions are not compatible to each other.

Right, the classical picture would have definite values for ##\vec{L_A}## and ##\vec{L_B}## for each of Alice and Bob's particles, respectively. ##\vec{L_A}## and ##\vec{L_B}## would have the same magnitude L and be anti-aligned along some direction in space (call that direction ##\vec{d}##). When Alice and Bob make measurements of ##\vec{L_A}## and ##\vec{L_B}## along ##\vec{A}## and ##\vec{B}##, respectively, they will get fractions of L correlated per conservation of angular momentum. In the quantum case, they both always measure L in every direction in such a way that Alice(Bob) can claim her(his) measurements were always along ##\vec{d}## and Bob's(Alice's) "incorrect" measurements averaged to the correct value. So, for QM there is no preferred ##\vec{d}## for this conserved vector quantity.
 
  • Like
Likes eloheim
  • #34
vanhees71 said:
As in all cases of apparent "quantum weirdness" I know, the minimal statistical interpretation resolves the weirdness. The only weirdness remaining is due to our classically trained prejudices about the behavior of objects, but these prejudices are due to our everyday experience with very much coarse-grained macroscopic observables, which are in fact averaging over many microscopic degrees of freedom, which leads to an apparent classical behavior, but in fact it's just due to the sufficiency of coarse-grained macroscopic observables to describe macroscopic systems. On these macroscopic scales all the quantum fluctuations (in the sense of statistical processes) are irrelevant to the accuracy of our everyday observations.

The weirdness is trivially resolved if you accept the QM predictions, which we know give CM via averages. That's what most physicists do, i.e., most physicists don't bother with foundations of QM. This attitude is famously called "shut up and calculate" by Mermin. As argued by Becker, physicists do require physical models to do physics (he has some nice examples in his book) and these models are what allow physicists to create new approaches to theory and experiment. Einstein thought QM was incomplete precisely because his model of physical reality would not accommodate QM predictions for entangled states. Bell's inequalities were derived precisely in response to Einstein's model of physical reality. In Sabine's new book, even Weinberg admits to looking for a theory underwriting QM because it violates his model of physical reality (that's not how he worded it of course).

What we're saying in our paper and book (and how I close my Insight) is that there is a model of physical reality (not simply "shut up and calculate" aka "instrumentalism") for which QM makes sense and is compatible with relativity. In this Insight, we see that the QM correlations follow from conservation of angular momentum for the quantum exchange of momentum as required for no preferred reference frame. That's compelling, but provides no 'causal influence' or hidden variables to account dynamically for the outcomes on a trial-by-trial basis. The constraint here only holds over space AND time, it's truly 4D, and it has no compelling dynamical counterpart. What we argue in our book (and in my blockworld Insight series) is that 4D constraints are fundamental, not dynamical laws. Most people disagree strongly with this (consider Fermat's Principle of Least Time versus Snell's Law, for example, which really explains the light ray's trajectory?). However, in case after case, we see that mysteries arise in physics because we demand dynamical explanation and all such mysteries disappear when we accept the explanation via 4D constraints. This is just one of many such examples.

So, this Insight really vindicates the shut-up-and-calculate attitude by providing a model of physical reality in which QM doesn't need to be 'fixed' or underwritten (anymore so than we already have with QFT anyway). QM is in beautiful accord with a truly 4D reality constrained in 4D fashion in such a way as to guarantee dynamical experience per CM.

I spent 24 years trying to figure out Mermin's "quantum mysteries for anybody." I finally feel as though I have the answer (a model of physical reality in which QM entanglement is in perfect accord with CM and SR). The invariant manner by which Mermin's "mysterious" QM correlations follow from conservation principles and lead to CM honestly makes me say, "how could I have been so stupid for so long?"
 
  • Like
Likes eloheim
  • #35
RUTA said:
The weirdness is trivially resolved if you accept the QM predictions, which we know give CM via averages. That's what most physicists do, i.e., most physicists don't bother with foundations of QM. This attitude is famously called "shut up and calculate" by Mermin. As argued by Becker, physicists do require physical models to do physics (he has some nice examples in his book) and these models are what allow physicists to create new approaches to theory and experiment. Einstein thought QM was incomplete precisely because his model of physical reality would not accommodate QM predictions for entangled states. Bell's inequalities were derived precisely in response to Einstein's model of physical reality. In Sabine's new book, even Weinberg admits to looking for a theory underwriting QM because it violates his model of physical reality (that's not how he worded it of course).
It's of course true that you need intuitive pictures about physics to "create" (or rather "discover") new theoretical models, but Einstein is a prime example for the danger of being trapped in philosophical prejudices.

Of course, in some sense the minimal statistical interpretation indeed is indeed a kind of nicer expression for "shutup and calculate". The question is whether you can expect more from a natural science than just this: You have a model (or even theory) which allows you to predict the outcome of observations, measurements, and experiments and than compare these expectations with the observations. If these expectations agree with the data, it's fine for the model, otherwise you have to think harder about what's wrong with the model and find a new one. This is indeed a creative act, and you need intuitive pictures to get the (finally) the right idea how to describe the phenomena with existing (which is almost always the case) models/theories or you have to find a new one (this occurred only two times after Newton, i.e., with the discovery of relativity around 1905 and of quantum theory in 1925).

I know that Weinberg thinks there is something unsolved with the foundations of quantum theory from his textbook on quantum mechanics (as always among the best textbooks on the subject). Although for me Weinberg is a role model for how to do theoretical physics (with a strict "no-nonsense approach" and with a clear mathematical exposition of all the papers and textbooks by him I'm aware of), this I do not understand, since there's no contradiction whatsoever with quantum theory and its application to real-world observations. So what should be incomplete in its applications?

I've not yet read Hossenfelders new book. The title "lost in math" already appalls me, since my view on theoretical physics is the opposite (I'd rather say "lost without math" ;-)), but I think she has indeed a point in saying that maybe we have to widen our view to new (mathematical) methodology beyond the symmetry paradigm, which was indeed the right paradigm for 20th-century physics in creating quantum theory (for me there's no convincing way to formulate quantum theory without symmetry principles and Nother's works on symmetries and conservation laws), relativity, and the Standard Models of elementary particle physics and cosmology, but it may well be that we need new methods to find a unified theory of QT and GR. She is also right in saying that it is hard to conceive whether we have a chance without new empirical findings clearly contradicting one of these fundamental theories (or rather our best approximation of the maybe and hopefully existing but yet undiscovered more comprehensive theory).

Towards Becker's book, I've a mixed feeling. On the one hand I find it overdue to get Bohr, Heisenberg, et al from their pedestal. The true interpretational problem is due to the unjustified predominance of the Copenhagen flavor of interpretations, and Bohr's writings on the subject doing more harm than good, because they are usually not well formulated and too vague and too qualitative ("lost without math"! indeed) to be not subject to speculations about their meaning. That said, Heisenberg is even worse! On the other hand, I cannot agree with Becker's enthusiasm for the de Broglie-Bohm approach since there's to my knowledge no convincing formulation of relativistic QFT within this approach. Any interpretation must be an interpretation of all of the working QTs, applied to real-world phenomena, and this includes relativistic local QFT although it's still not a mathematically strictly defined theory.

What we're saying in our paper and book (and how I close my Insight) is that there is a model of physical reality (not simply "shut up and calculate" aka "instrumentalism") for which QM makes sense and is compatible with relativity. In this Insight, we see that the QM correlations follow from conservation of angular momentum for the quantum exchange of momentum as required for no preferred reference frame. That's compelling, but provides no 'causal influence' or hidden variables to account dynamically for the outcomes on a trial-by-trial basis. The constraint here only holds over space AND time, it's truly 4D, and it has no compelling dynamical counterpart. What we argue in our book (and in my blockworld Insight series) is that 4D constraints are fundamental, not dynamical laws. Most people disagree strongly with this (consider Fermat's Principle of Least Time versus Snell's Law, for example, which really explains the light ray's trajectory?). However, in case after case, we see that mysteries arise in physics because we demand dynamical explanation and all such mysteries disappear when we accept the explanation via 4D constraints. This is just one of many such examples.
Well, I've to read the Insight article again. So far I couldn't get the content of the whole approach :-(. I also do not understand, what philosophers and philosophy-attached physicists mean, when they talk about "reality". For me QT is the best description of reality we have, and the only thing that's incomplete with it is the lack of a consistent quantum description of gravity. For me there's no interpretational issue at all, and I don't think that looking for classical/deterministic non-local descriptions have a chance to lead to anything, because a non-local theory is hard to formulate within relativistic physics. One historical failure is Feynman's and Wheeler's attempt to formulate an action at a distance (non-local) theory for interacting systems of charged particles. Although this "absorber theory" seems to work to some extent on a classical level, there was (so far) nobody able to build a quantum formulation of it.

So, this Insight really vindicates the shut-up-and-calculate attitude by providing a model of physical reality in which QM doesn't need to be 'fixed' or underwritten (anymore so than we already have with QFT anyway). QM is in beautiful accord with a truly 4D reality constrained in 4D fashion in such a way as to guarantee dynamical experience per CM.

I spent 24 years trying to figure out Mermin's "quantum mysteries for anybody." I finally feel as though I have the answer (a model of physical reality in which QM entanglement is in perfect accord with CM and SR). The invariant manner by which Mermin's "mysterious" QM correlations follow from conservation principles and lead to CM honestly makes me say, "how could I have been so stupid for so long?"
QM entanglement is in perfect accord with SR and with none local classical model. So there must be a non-local aspect in what you call "classical mechanics", but as I said, I better make another attempt to understand your Insight article.
 
  • #36
Weinberg seems to favor the "ant's-eye view" per Wilczek. On p 147 in The Geometric Analogy of Gravitation and Cosmology he writes
At one time it was even hoped that the rest of physics could be brought into a geometry formulation, but this hope has met disappointment, and the geometric interpretation of the theory of gravitation has dwindled to a mere analogy ... it simply doesn't matter whether we ascribe these predictions to the physical effect of gravitational fields on the motion of planets and photons or to a curvature of space and time. (The reader should be warned that these views are heterodox and would meet with objections from many general relativists.)
His view, as he makes clear elsewhere, is the action of gravitational fields on matter not the 4D view of spacetime curvature. That dynamical view of physical reality then leads him to believe QM is not complete. Here is a Weinberg quote in Sabine's book (p. 126-7)
You can very well understand quantum mechanics in terms of an interaction of the system you're studying with an external environment which includes an observer, but this involves a quantum mechanical system interacting with a macroscopic system that produces the decoherence between different branches of the initial wave function. And where does that come from? That should be described also quantum mechanically. And, strictly speaking, within quantum mechanics itself there is no decoherence.
This is a nonstarter if you accept the 4D view (Wilczek's "God's-eye view") of QM as I explain in the Insight. Your model of physical reality will greatly influence how you do physics. That's why, as Becker argues, it's important for physicists to reflect seriously on their models. They don't need to make a career of studying different models, as in foundations, but they should all be aware of existing or possible alternative models within their own fields.
 
  • #37
Well, this I can agree with. One should always be open-minded. What I disagree with is the claim that philsophy is of any help to solve physics problems. As you can well see from the quote of Sabine's book, Weinberg doesn't argue philosophically but physically. On the other hand, is this really a problem? There are effective descriptions of decoherence as approximations of QT. Usually this goes via influence-functional methods of quantum-kinetic theory, resulting in master equations for open quantum systems. I find this already a pretty satisfactory explanation for the "classicality" of behavior of macroscopic objects, including measurement devices in the sense of the decoherence program.

There's of course one point, which however is again pretty metaphysical: What's the meaning of the quantum state of the entire universe. Is the entire universe an open system as well? This seems to be a pretty disturbing idea since the universe is, by definition, just everything. So what makes the universe open, if it includes everything? On the other hand, according to standard cosmology (particularly with inflation) we can only observe a tiny bit of the entire universe. So can we interpret the observable part of the universe, which is the only thing that can be described by physics as we usually define it since unobservables are not subject of any serious physics, as an open system? But then there should be interactions of the observable part with the "rest", but that's impossible because by definition the rest is beyond some horizon, i.e., the parts of the observable universe cannot interact with the "rest". If you have such a comprehensive view, I can admit that there is a fundamental problem with the interpretation of quantum theory, but as my just given examples show, it seems as well not so easy to be solved within the scientific method, because it may concern principally unobservable entities, and thus are no longer subject to the scientific realm of human knowledge. Maybe this teaches us that our objective knowledge is in principle always incomplete. Well, the natural sciences teaches us humility. Starting from being the center of the universe (an idea of philosophers by the way ;-)), we've become a humble little accident in a totally unimportant little galaxy at a place that is in no way distinguished from any other place in the universe :-)).
 
  • #38
Decoherence requires a classical environment, so it cannot explain classicality as arising from quantum systems, it can only explain how the quantum and classical relate to each other. In the IJQF version of the paper we made an argument for quantum-classical contextuality along those lines, but that's the part of the paper we took out for submission to a physics journal :-)

Again, this is where your model of physical reality bears significantly on how you do physics. If your model of physical reality is quantum-classical, i.e., both are equally fundamental, then you don't spend any of your research time trying to better quantum mechanics. Both Hardy and Weinberg have spent years trying to do that without success. As Weinberg discovered, "It is very hard to do better than quantum mechanics'' (p 124 of Sabine's book). Hardy tried to find information-theoretic postulates that would uniquely specify QM over classical probability theory and superquantum correlations. He writes, "Either there do exist higher theories in this hierarchy or there do not. For many years I tried to find such theories, and I tried to prove that such theories do not exist. I also tried to find other reasonable axioms that rule out higher theories in this hierarchy" (p 3 of https://arxiv.org/pdf/1303.1538.pdf). What he ended up with are five postulates satisfied by both classical and quantum probability theories. If Hardy's model of physical reality were quantum-classical instead of "quantum rather than classical," he might stop with this last result.
 
  • #39
I really liked this insight, but I am confused about dynamical vs adynamical.
Insight article said:
Whether or not you consider this apparently simple 4-dimensional (4D) constraint (conservation of angular momentum on average)
The concept of average (and ensemble) it what is not "real". As far as I understand QM (or even classic statistical mechanics) it is the observer effect.
Is there a formal way to slice a 4D volume (non arbitrary, for all FoR) where this quantity is conserved ?
(keep in mind a am a layman in your response)
 
  • #40
Boing3000 said:
I really liked this insight, but I am confused about dynamical vs adynamical.

The concept of average (and ensemble) it what is not "real". As far as I understand QM (or even classic statistical mechanics) it is the observer effect.
Is there a formal way to slice a 4D volume (non arbitrary, for all FoR) where this quantity is conserved ?
(keep in mind a am a layman in your response)

If you’re a layman and you understood my Insight, give yourself a pat on the back. I wrote that for my undergrad QM students and colleagues on PF.

Apparently, the concept of average is “more real” in QM than the facts for any given trial. That’s the point of the argument. Doing a Lorentz boost to some other FoR (Charlie’s) in motion wrt Alice and Bob would not obscure this result because Charlie would still see the spacelike correlations.
 
  • #41
RUTA said:
Decoherence requires a classical environment, so it cannot explain classicality as arising from quantum systems, it can only explain how the quantum and classical relate to each other. In the IJQF version of the paper we made an argument for quantum-classical contextuality along those lines, but that's the part of the paper we took out for submission to a physics journal :-)
But the "classical environment" can be described as a coarse-grained quantum-many-body system in the sense that you can derive the classical Boltzman transport equation by a gradient expansion or an ##\hbar## expansion of the full Kadanoff-Baym equations. There is no necessity for a quantum-classical cut, because the classical behavior of macroscopic systems (in usual everyday states) can be understood from QT via suitable approximations.

In the same sense Newtonian mechanics is valid as an approximation of relativistic mechanics in its range of applicability (slow motions and not too strong gravitational and em. fields).
 
  • #42
vanhees71 said:
But the "classical environment" can be described as a coarse-grained quantum-many-body system in the sense that you can derive the classical Boltzman transport equation by a gradient expansion or an ##\hbar## expansion of the full Kadanoff-Baym equations. There is no necessity for a quantum-classical cut, because the classical behavior of macroscopic systems (in usual everyday states) can be understood from QT via suitable approximations.

In the same sense Newtonian mechanics is valid as an approximation of relativistic mechanics in its range of applicability (slow motions and not too strong gravitational and em. fields).

Yes but to get from many quantum systems to a classical system via ED requires a classical environment. ED is an add-on to QM and QM requires CM. We had a nice quote from Landau & Lifshitz saying QM is unique among theories of physics in that it requires its limiting theory (CM). What we have now is a quantum-classical self-consistency with ED and QM and CM. So if you can accept a quantum-classical model of physical reality as we proposed, you’re not going to look for some purely quantum theory underwriting QM. Both Weinberg and Hardy seem to disagree and consequently they spend much time looking for that more fundamental theory. Again your model of physical reality largely determines your approach to physics.
 
  • #43
That measurement apparati are macroscopic seems to be evident since we need macroscopic bodies to be able to read off the measurement result. I cannot follow your other statements clearly since I've no clue what the acronym ED might mean. Anyway, QM does not need CM to be formulated.The fundamental postulates are independent of CM.
 
  • #44
ED = environmental decoherence. Here is the explicit quote (p 3 Landau & Lifshitz, 1977)
Thus quantum mechanics occupies a very unusual place among physical theories: it contains classical mechanics as a limiting case, yet at the same time it requires this limiting case for its own formulation.
In order to construct the QM propagator you use the classical action. QM is built around CM. That's why Weinberg is not happy with it (p 124 Sabine, 2018)
You would like to understand macroscopic things like experimental apparatuses and human beings in terms of the underlying theory. You don't want to see them brought in on the level of axioms of the theory. ... In my view we ought to take seriously the possibility of finding some more satisfactory other theory to which QM is only a good approximation. ... I have tried very hard to develop that more satisfactory other theory without success ... It is very hard to do better than QM.
So, why not simply work with a quantum-classical model of physical reality? There's nothing in Nature demanding "quantum rather than classical." And we still have a beautiful quantum decomposition of classical systems (as you point out), even if such decompositions require a classical context. We just can't apply that decomposition in toto (as you point out).

We'll put these points back into foundations of physics versions of the paper :-)
 
  • #45
Of course, in fact everything known for the past 120 or so years demancs a quantum rather than classical description. Classicality is an approximate description valid for macroscopic observables for many-body systems, derivable from QT. This does, however, not imply that macroscopic systems always necessarily behave "classically".

In fact, there is no physical decomposition into a classical and a quantum world; at least there's not the slightest empirical evidence for something like this (known also as the "quantum-classical cut" in the infamous Copenhagen class of interpretations; it's the 2nd-most ugly and unnecessary assumption of the adepts of the Copenhagen quantum gibberish; only the idea of a collapse is uglier and more misleading!). It is just a matter of preparation techniques to reveal quantum behavior of larger and larger objects. Already buckyballs are pretty large objects consisting of 60 carbon atoms, and they can, appropriately cooled be prepared in a way to get quantum-interference effects in the double-slit experiment. It's also clear that it is very easy already for such "mesoscopic" systems to make them behave "classically" by just not cooling them enough. The thermal e.m. radiation of a few photons is already enough "coupling to the environment" to get enough decoherence to justify a classical description.

Other really macroscopic systems are known to show quantum behavior even before modern QT has been discovered. One historically important example is the specific heat of solids at low temperatures. Famously Einstein and in a refined way Debye early on explained (at least qualitatively) the observed behavior of the specific heat at low temperatures applying the "old quantum theory" to the collective modes of lattice vibrations.
 
  • #46
Our quantum-classical model invokes a quantum-classical cut as necessary to use QM (which must be done). Depending on the context, that cut can include screened-off elephants, there is no definitive "size" defining this cut, we don't deviate at all from the practice of QM. It's just a matter of whether or not one is happy with this form of "contextuality" rather than demanding "reductionism" as Weinberg seeks. Again, Nature doesn't demand reductionism and all indications are otherwise, as Weinberg notes. So, do you continue to spend your most precious commodity (your time) seeking "some more satisfactory other theory to which QM is only a good approximation"? Or, do you spend your time looking for new theories of physics, e.g., quantum gravity, via quantum-classical contextuality? Your research direction is determined by your choice for a model of physical reality, precisely as Becker points out.
 
  • Like
Likes Physics Footnotes
  • #47
vanhees71 said:
Of course, in fact everything known for the past 120 or so years demancs a quantum rather than classical description. Classicality is an approximate description valid for macroscopic observables for many-body systems, derivable from QT. This does, however, not imply that macroscopic systems always necessarily behave "classically".

In fact, there is no physical decomposition into a classical and a quantum world; at least there's not the slightest empirical evidence for something like this (known also as the "quantum-classical cut" in the infamous Copenhagen class of interpretations; it's the 2nd-most ugly and unnecessary assumption of the adepts of the Copenhagen quantum gibberish; only the idea of a collapse is uglier and more misleading!). It is just a matter of preparation techniques to reveal quantum behavior of larger and larger objects. Already buckyballs are pretty large objects consisting of 60 carbon atoms, and they can, appropriately cooled be prepared in a way to get quantum-interference effects in the double-slit experiment. It's also clear that it is very easy already for such "mesoscopic" systems to make them behave "classically" by just not cooling them enough. The thermal e.m. radiation of a few photons is already enough "coupling to the environment" to get enough decoherence to justify a classical description.

Other really macroscopic systems are known to show quantum behavior even before modern QT has been discovered. One historically important example is the specific heat of solids at low temperatures. Famously Einstein and in a refined way Debye early on explained (at least qualitatively) the observed behavior of the specific heat at low temperatures applying the "old quantum theory" to the collective modes of lattice vibrations.

This is completely wrong. There is no quantum reality in Copenhagen.
 
  • Like
Likes Fra
  • #48
vanhees71 said:
In fact, there is no physical decomposition into a classical and a quantum world; at least there's not the slightest empirical evidence for something like this (known also as the "quantum-classical cut" in the infamous Copenhagen class of interpretations; it's the 2nd-most ugly and unnecessary assumption of the adepts of the Copenhagen quantum gibberish; only the idea of a collapse is uglier and more misleading!).

There seems to be some misunderstanding! N. P. Landsman writes in "Between classical and quantum" (https://arxiv.org/abs/quant-ph/0506082):

"Describing quantum physics in terms of classical concepts sounds like an impossible and even selfcontradictory task (cf. Heisenberg, 1958). For one, it precludes a completely quantum-mechanical description of the world: ‘However far the phenomena transcend the scope of classical physical explanation, the account of all evidence must be expressed in classical terms.’ But at the same time it precludes a purely classical description of the world, for underneath classical physics one has quantum theory.66 The fascination of Bohr’s philosophy of quantum mechanics lies precisely in his brilliant resolution of this apparently paradoxical situation.

The first step of this resolution that he and Heisenberg proposed is to divide the system whose description is sought into two parts: one, the object, is to be described quantum-mechanically, whereas the other, the apparatus, is treated as if it were classical. Despite innumerable claims to the contrary in the literature (i.e. to the effect that Bohr held that a separate realm of Nature was intrinsically classical), there is no doubt that both Bohr and Heisenberg believed in the fundamental and universal nature of quantum mechanics, and saw the classical description of the apparatus as a purely epistemological move without any counterpart in ontology, expressing the fact that a given quantum system is being used as a measuring device.67 For example: ‘The construction and the functioning of all apparatus like diaphragms and shutters, serving to define geometry and timing of the experimental arrangements, or photographic plates used for recording the localization of atomic objects, will depend on properties of materials which are themselves essentially determined by the quantum of action’ (Bohr, 1948), as well as: ‘We are free to make the cut only within a region where the quantum mechanical description of the process concerned is effectively equivalent with the classical description’ (Bohr, 1935).68"
 
  • Like
Likes Fra
  • #49
atyy said:
This is completely wrong. There is no quantum reality in Copenhagen.
There's no quantum reality in Copenhagen, but in the minimal statistical interpretation there is. It's just excepting the fundamental result of quantum theory that Nature is intrinsically probabilistic and cannot be described with local deterministic models.
 
  • #50
Lord Jestocost said:
There seems to be some misunderstanding! N. P. Landsman writes in "Between classical and quantum" (https://arxiv.org/abs/quant-ph/0506082):

"Describing quantum physics in terms of classical concepts sounds like an impossible and even selfcontradictory task (cf. Heisenberg, 1958). For one, it precludes a completely quantum-mechanical description of the world: ‘However far the phenomena transcend the scope of classical physical explanation, the account of all evidence must be expressed in classical terms.’ But at the same time it precludes a purely classical description of the world, for underneath classical physics one has quantum theory.66 The fascination of Bohr’s philosophy of quantum mechanics lies precisely in his brilliant resolution of this apparently paradoxical situation.

The first step of this resolution that he and Heisenberg proposed is to divide the system whose description is sought into two parts: one, the object, is to be described quantum-mechanically, whereas the other, the apparatus, is treated as if it were classical. Despite innumerable claims to the contrary in the literature (i.e. to the effect that Bohr held that a separate realm of Nature was intrinsically classical), there is no doubt that both Bohr and Heisenberg believed in the fundamental and universal nature of quantum mechanics, and saw the classical description of the apparatus as a purely epistemological move without any counterpart in ontology, expressing the fact that a given quantum system is being used as a measuring device.67 For example: ‘The construction and the functioning of all apparatus like diaphragms and shutters, serving to define geometry and timing of the experimental arrangements, or photographic plates used for recording the localization of atomic objects, will depend on properties of materials which are themselves essentially determined by the quantum of action’ (Bohr, 1948), as well as: ‘We are free to make the cut only within a region where the quantum mechanical description of the process concerned is effectively equivalent with the classical description’ (Bohr, 1935).68"
Between Bohr's (mis)understanding of quantum theory and today are 83 years with tremendous progress not only in the possibility to test quantum theory experimentally but also in the understanding of how the classical behavior of classical systems, including measurement devices, can be understood in terms of many-body quantum theory. The possibility of a local deterministic description of Nature is ruled out with the amazingly accurate measurements of all kinds of Bell tests. The emergence of a "classical world" is of course statistical as is all of many-body physics.
 
  • Like
Likes weirdoguy
  • #51
RUTA said:
Our quantum-classical model invokes a quantum-classical cut as necessary to use QM (which must be done). Depending on the context, that cut can include screened-off elephants, there is no definitive "size" defining this cut, we don't deviate at all from the practice of QM. It's just a matter of whether or not one is happy with this form of "contextuality" rather than demanding "reductionism" as Weinberg seeks. Again, Nature doesn't demand reductionism and all indications are otherwise, as Weinberg notes. So, do you continue to spend your most precious commodity (your time) seeking "some more satisfactory other theory to which QM is only a good approximation"? Or, do you spend your time looking for new theories of physics, e.g., quantum gravity, via quantum-classical contextuality? Your research direction is determined by your choice for a model of physical reality, precisely as Becker points out.
If it were my expertise and if I had some good idea somehow I'd rather try to find a way to formulate a consistent quantum theory of gravitation than tackle some vague philosophical problems with no clear scientific content. I don't believe in the scholastic idea of finding any useful science without a firm confirmation on empirical grounds. That seems to be the reason why we still have no real breakthrough in understanding the most pressing issue in the foundation of physics, i.e., to find a consistent unification of QT (so far relativistic local and microcausal QFTs) and gravity (so far GR, which is a classical relativistic field theory). I think the trouble is that we have not the slightest clue about what effects a quantization of gravity we have to expect since there are no observations hinting at such effects.
 
  • #52
vanhees71 said:
If it were my expertise and if I had some good idea somehow I'd rather try to find a way to formulate a consistent quantum theory of gravitation than tackle some vague philosophical problems with no clear scientific content. I don't believe in the scholastic idea of finding any useful science without a firm confirmation on empirical grounds. That seems to be the reason why we still have no real breakthrough in understanding the most pressing issue in the foundation of physics, i.e., to find a consistent unification of QT (so far relativistic local and microcausal QFTs) and gravity (so far GR, which is a classical relativistic field theory). I think the trouble is that we have not the slightest clue about what effects a quantization of gravity we have to expect since there are no observations hinting at such effects.

And if you tried to tackle QG, you’d need a starting point (“some good idea somehow”), which depends on some tacit or explicit model of physical reality you’re trying to map using empiricism and mathematics (= physics). You can’t escape the need for this model, as Becker so nicely showed in his book. Given that many brilliant physicists have worked decades without finding QG suggests to me that we should consider new models. That’s what Hardy and others in QIT argue is the value of their reconstruction project. The manner by which our model bears on QG is explained in chap 6 of our book, so I do have “some good idea” on how to proceed (and I am doing so!). This is physics, not “some vague philosophical problems with no clear scientific content.”
 
  • Like
Likes eloheim
  • #53
I do not believe that the minimal interpretation is really any different from the Copenhagen interpretation when it comes to requiring a classical/quantum split. In the minimal interpretation, the meaning of quantum amplitudes is that they give statistics for measurement results. That seems to me to require a distinction between "measurements" and other interactions. That's basically the same as the classical/quantum split.
 
  • #54
RUTA said:
And if you tried to tackle QG, you’d need a starting point (“some good idea somehow”), which depends on some tacit or explicit model of physical reality you’re trying to map using empiricism and mathematics (= physics). You can’t escape the need for this model, as Becker so nicely showed in his book. Given that many brilliant physicists have worked decades without finding QG suggests to me that we should consider new models. That’s what Hardy and others in QIT argue is the value of their reconstruction project. The manner by which our model bears on QG is explained in chap 6 of our book, so I do have “some good idea” on how to proceed (and I am doing so!). This is physics, not “some vague philosophical problems with no clear scientific content.”

For example, here are some papers inspired by our model:

Modified Regge Calculus as an Explanation of Dark Energy,” W.M. Stuckey, Timothy McDevitt and Michael Silberstein, Classical & Quantum Gravity 29 055015 (2012). http://arxiv.org/abs/1110.3973.

“Explaining the Supernova Data without Accelerating Expansion,” W.M. Stuckey, Timothy McDevitt and Michael Silberstein. Honorable Mention in the Gravity Research Foundation 2012 Awards for Essays on Gravitation, May 2012. International Journal of Modern Physics D 21, No. 11, 1242021 (2012) DOI: 10.1142/S0218271812420217 http://users.etown.edu/s/STUCKEYM/GRFessay2012.pdf.

“End of a Dark Age?” W.M. Stuckey, Timothy McDevitt, A.K. Sten, and Michael Silberstein. Honorable Mention in the Gravity Research Foundation 2016 Awards for Essays on Gravitation, May 2016. International Journal of Modern Physics D 25, No. 12, 1644004 (2016) DOI: 10.1142/S0218271816440041 http://arxiv.org/abs/1605.09229

This first is specifically the result of our approach to QG. The resolution of DM is via the contextuality already inherent in GR (multiple values of mass for same matter). Different models of physical reality will produce different physics.
 
  • #55
vanhees71 said:
If it were my expertise and if I had some good idea somehow I'd rather try to find a way to formulate a consistent quantum theory of gravitation than tackle some vague philosophical problems with no clear scientific content. I don't believe in the scholastic idea of finding any useful science without a firm confirmation on empirical grounds. That seems to be the reason why we still have no real breakthrough in understanding the most pressing issue in the foundation of physics, i.e., to find a consistent unification of QT (so far relativistic local and microcausal QFTs) and gravity (so far GR, which is a classical relativistic field theory). I think the trouble is that we have not the slightest clue about what effects a quantization of gravity we have to expect since there are no observations hinting at such effects.

We have had a real breakthrough in quantizing gravity - string theory and gauge/gravity duality.
 
  • #56
atyy said:
We have had a real breakthrough in quantizing gravity - string theory and gauge/gravity duality.

There's definitely no consensus for that approach and it's been around for decades. If that's your belief, keep at it though!
 
  • Like
Likes atyy
  • #57
RUTA said:
the contextuality already inherent in GR (multiple values of mass for same matter)

Can you explain in more detail what this means?
 
  • #58
atyy said:
We have had a real breakthrough in quantizing gravity - string theory and gauge/gravity duality.
Well, there's not yet a single observable predictio from string theory. AdS/CFT has some applications even in my field of relativistic heavy-ion collisions, but to call it a breakthrough is a bit too enthusiastic ;-)).
 
  • Like
Likes Demystifier and Fra
  • #59
PeterDonis said:
Can you explain in more detail what this means?

See this paper (attached):
“Could GR Contextuality Resolve the Missing Mass Problem?” W.M. Stuckey, Timothy McDevitt, A.K. Sten, and Michael Silberstein. Honorable Mention in the Gravity Research Foundation 2018 Awards for Essays on Gravitation, May 2018.

and this one referenced therein (also attached with errata):
“The Observable Universe Inside a Black Hole,” W.M. Stuckey, American Journal of Physics 62, No. 9, 788 – 795 (1994).

The idea is simple, as I've written many times on PF. When you combine two different GR solutions (two spacetime regions with different geometries) into one new solution, the mass of the matter responsible for the combined solution can be different for observers in each of the two different spacetime regions. In the AJP paper, we have a sphere of FLRW dust surrounded by Schwarzschild vacuum. The mass of the dust as measured by co-moving observers in the FLRW dust sphere equals the mass M of the Schwarzschild metric for the flat-space FLRW model and is less/greater than that mass in the open/closed models. So per GR, mass is a geometric property of spacetime, not an intrinsic property of matter.
 

Attachments

  • #60
atyy said:
This is completely wrong. There is no quantum reality in Copenhagen.

I'm not sure I can agree with this statement. In the Copenhagen interpretation, as I understand it, is we take a state vector, and from this state vector, we can decompose it into a bunch of elements. We then assign a probability distribution to this set, and give weights to each element. However, until the wavefunction "collapses", nothing is "real" for the classical world. The classical world is ignorant of the underlying probability distribution. We only "see" the outcome!

So can we not consider that a quantum reality? It could be that I'm too invested in the math of the interpretation, and not the interpretation itself.

EDIT: Feel free to PM me as well, I don't want to divert the discussion from the main thread as I haven't read every post. Hopefully this isn't off-topic!
 

Similar threads

  • · Replies 118 ·
4
Replies
118
Views
13K
Replies
9
Views
2K
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 82 ·
3
Replies
82
Views
10K
Replies
9
Views
3K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 42 ·
2
Replies
42
Views
5K