Why would a magnetic monopol's field be 1/r^2?

AI Thread Summary
The discussion centers on the behavior of a hypothetical magnetic monopole's field, which is proposed to decrease as 1/r^2, similar to electric charges. This relationship is suggested to maintain symmetry in Maxwell's equations, which would otherwise be asymmetrical without such behavior. Participants debate whether a magnetic monopole could exist with a different field decay and the implications for Maxwell's equations. It is emphasized that any deviation from the 1/r^2 behavior would undermine the goal of achieving symmetry in these fundamental equations. The conversation concludes with an acknowledgment of the importance of maintaining this symmetry in theoretical physics.
Yonah
Messages
3
Reaction score
0
Hi,
I was reading Purcell's Electricity and Magnetism. It says that if there were a magnetic charge, its field would behave like an electric charge (field pointing out radially and magnitude decreasing as 1/r^2). Why? Could this be deduced from magnetic fields produced by electric charges? If so, how?

I'd appreciate your help!
 
Physics news on Phys.org
The only reason to think that magnetic monopoles exist is because it would make things like Maxwells equations more symmetrical. If they didn't behave like an electric monopole then that would make the equations asymmetrical, which would defeat the whole point.
 
Ok, so you are saying that there would be no contradiction among maxwell's equations necesarily (except of course ∇⋅B=0) if a magnetic monopol existed which decreased in a way other than 1/r^2. Things just wouldn't be symetrical in that case. Is that correct?
 
If the ##\vec B## field from a magnetic monopole did not go like ##1/r^2##, what would replace ##\vec \nabla \cdot \vec B = 0## and its integral equivalent ##\oint {\vec B \cdot d \vec a } = 0##?
 
Yonah said:
Ok, so you are saying that there would be no contradiction among maxwell's equations necesarily (except of course ∇⋅B=0) if a magnetic monopol existed which decreased in a way other than 1/r^2. Things just wouldn't be symetrical in that case. Is that correct?
No, that isn't what I am saying. I am saying that to my knowledge nobody even considers that. The idea is to make Maxwell's equations more symmetrical, not less. I don't know how a change like the one you describe could wind up with a set of equations even remotely similar to Maxwells equations. It would be the complete opposite of what monopole proponents want to accomplish.
 
Ok, I think I understand what your getting at. Thanks!
 
Thread 'Motional EMF in Faraday disc, co-rotating magnet axial mean flux'
So here is the motional EMF formula. Now I understand the standard Faraday paradox that an axis symmetric field source (like a speaker motor ring magnet) has a magnetic field that is frame invariant under rotation around axis of symmetry. The field is static whether you rotate the magnet or not. So far so good. What puzzles me is this , there is a term average magnetic flux or "azimuthal mean" , this term describes the average magnetic field through the area swept by the rotating Faraday...

Similar threads

Back
Top