kuruman said:
I do not understand this inequality and how tipping will start/continue if it is satisfied. For ##\phi >\pi/4## the left side is certainly negative while the right side is positive and this will still be so as ##\phi## increases past that point. Isn't ##A## vertical and hence ##\phi=\pi/2## when the CM is at its highest point? What am I missing/misunderstanding?
Ahem.. correcting my algebra..
For the condition for starting/continuing to tip we can take ##\dot\phi=0## and ##\ddot\phi>0##.
Will also assume φ≤π/2, since the development in post 18 might be invalid else.
From the equation in post #18:
##(\frac 13-(\mu\sin(\phi)-\cos(\phi))\cos(\phi))(\mu\sin(\phi)-\cos(\phi))>0##
Writing ##\mu=\tan(\alpha)## we can break this into two cases.
1. ##\mu\sin(\phi)>\cos(\phi)## (i.e. φ+α>π/2)
##\frac 13>(\tan(\alpha)\sin(\phi)-\cos(\phi))\cos(\phi)##
##\frac 23>\tan(\alpha)\sin(2\phi)-1-\cos(2\phi)##
##\frac 53>\tan(\alpha)\sin(2\phi)-\cos(2\phi)##
##5\cos(\alpha)>3(\sin(\alpha)\sin(2\phi)-\cos(\alpha)\cos(2\phi))##
##5\cos(\alpha)+3\cos(\alpha+2\phi)>0##
Looks weird, but..
2. φ+α<π/2
As above but with all inequalities reversed. I'd say the conclusion for this case is it can't happen.
Still looks mighty strange...