Physics_Kid said:
sorry, could not get back here in quite some time. i mentioned kerogen still under progress and was challenged. the only solid evidence i have is that kerogen is still down there being sought after by the fracking folks. that's at least some evidence to tell me the process is still going on, the Earth is still crushing organics and kerogen is still there also being crushed/processed by nature.
http://www.petroleum.co.uk/chemistry-of-petroleum-formation
Interesting information, and plainly stated in layman terms.
What I took away:
- it takes thousands or millions of years to make petroleum
- petroleum only forms when the organic material is deposited in an oxygen-deprived environment (mostly zooplankton)
- that means most deposits are at the bottom of what are now or once were great bodies of water
This tells me that to find newly forming deposits, we need to look for them at the bottom of (perhaps formerly) bodies of very deep water (remember the process also requires extreme pressure, whether that be water on top of the deposit, which is covered by silt, or filled in areas that were once water). I honestly don't know enough geology to now what that means, not only in terms of time, but in geographical locations.
My biggest question, however, is when was the last time we had a massive die-off of zooplankton, or other species, that was subsequently, and immediately covered in something that could prevent oxygen from reaching the biomass, while the process takes place? Or. to approach the question from another angle, has anyone carbon-dated the oil that we are pulling from the earth? Do we actually know how old the resource we are burning really is?
Don't get me wrong, please. I am not saying this is all hogwash. Rather, I am trying to it put into a time-scale of reference, so that we can consider the scale of production, verses usage, so that we can think about how long it might take (if all of this is indeed realistic,) for the Earth to "stockpile" enough new petroleum, to make it worth considering as a practical resource.
My gut tells me that the period of time before that happens is so far in the distant future, as to make discussion moot, because other forms of energy, that have far less impact on our environment, and are much easier to renew become practical, and financially advantageous, by comparison.
Of course, Solar and wind and wave stand out as the fore runners, but as we have already discussed, they each have their short-comings, at least in so much as technology offers them to us, today. Nuclear has it's pros and cons, and I suspect will be hotly debated until the last nuclear plant is closed. Coal, Natural Gas, and all other fossil fuels have a (nearly) finite reserve, at least until we can get a grapple on the numbers discussed above, and are very distructive to our ecosystem. (But that's a whole 'nother kettle of fish...)
And so we come full circle (I think). What is the future of Solar? How can we overcome the shortcomings of a power source that only produces for a limited number of hours each day, and is highly dependent on weather, and distance of placement from the equator? Can we interconnect solar arrays around the world, and therefore create an always-on source of power? (Seems kinda wasteful, IMO.) Do we "settle" for a hi-brid system, and augment power using some combination of the other choices, until we dream up a better solution? Sadly, I don't see a better choice.