MHB Winning Tennis with Probability 0.3 and 0.7

  • Thread starter Thread starter WMDhamnekar
  • Start date Start date
  • Tags Tags
    Tennis
WMDhamnekar
MHB
Messages
376
Reaction score
28
Hi,

What is your probability of winning a game of tennis, starting from the even score Deuce (40-40), if your probability of winning each point is 0.3 and your opponent’s is 0.7?

1645684239650.png


My answer:
I think the sequence of independent trials are required to win a game of tennis starting from even score Deuce(40-40),each of which is a success with probability (0.3 × 0.3 =0.09) or a failure with probability (0.7 × 0.3 + 0.7 × 0.3 =0.42). Suppose, the independent trials to win a game of tennis are n. That means after (n-1) trials of failures, the nth trial is success.

$$ \displaystyle\sum_{n=0}^{\infty} 0.09 \cdot (0.42)^n =\lim_{n \to \infty}\frac{0.09\cdot ( 1 - 0.42^n)}{1- 0.42}= 0.15517 $$ = 15.51 %
 
Last edited:
Physics news on Phys.org
Have you worked out the states and the state transition probability matrix?
I see the states as
Deuce, Ad-In, Ad-Out, Game

with Game being an absorbing state.
 
Write out all the conditional probabilites P(W|X) where X = A, B, D. You will have a linear system of three unknowns and three equations, which can be solved by standard methods.

For example: If you are in state B, you must win the next point to have any chance of winning. If you lose the point you lose the game, so
P(W|B) = q P(W|D)
because if you do win the point (which you do with probability q), then you will be in state D and your probability of winning will be P(W|D).
 
There is a useful shortcut in considering two point played at a time. If the probability of winning a point is ##p##, then the probability of winning the game (##P##) satisfies:
$$P = p^2 + 2p(1-p)P$$Hence$$P = \frac{p^2}{2p^2 - 2p + 1}$$With ##p = 0.3##, this gives ##P \approx 0.155##.
 
  • Like
Likes DrClaude and Orodruin
PeroK said:
There is a useful shortcut in considering two point played at a time. If the probability of winning a point is ##p##, then the probability of winning the game (##P##) satisfies:
$$P = p^2 + 2p(1-p)P$$Hence$$P = \frac{p^2}{2p^2 - 2p + 1}$$With ##p = 0.3##, this gives ##P \approx 0.155##.
Other way of seeing this: Probability of winning in two points is ##p^2##. Probability of losing in two points is ##(1-p)^2 = 1-2p+p^2##. Probability of winning must therefore be
\[
\frac{p^2}{p^2 + (1-p)^2} = \frac{p^2}{2p(p-1) + 1}
\]
as otherwise we return to the same state.
 
  • Like
Likes DrClaude and PeroK
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...

Similar threads

Replies
10
Views
2K
Replies
1
Views
1K
Replies
7
Views
2K
Replies
8
Views
2K
Replies
3
Views
1K
Replies
1
Views
2K
Replies
2
Views
2K
Back
Top