MHB Word problem - Application of linear equations

AI Thread Summary
The discussion revolves around solving a word problem involving linear equations related to student enrollment in English courses based on an aptitude exam. The problem states that in a class of 1240 students, more students are enrolled in English fundamentals than in English composition. If 30 more students had passed the exam, both courses would have equal enrollment. The correct equations to solve are established, leading to the conclusion that 605 students are taking English composition and 635 are in English fundamentals. The solution is confirmed as accurate based on the provided reasoning and calculations.
paulmdrdo1
Messages
382
Reaction score
0
Every freshman student at a particular college is required to take an english aptitude exam. A student who passes the examination enrolls in english composition, and a student who fails the test must enroll in english fundamentals. In a freshman class of 1240 students there are more students enrolled in english fundamentals than in english composition. However, if 30 more students had passed the test, each course would have the same enrollment. how many students are taking each course?

My solution

let $x=$number of students who passed

$1240-x =$ number of students who failed

$x+30=1240-x$

$2x=1240-30$
$2x=1210$
$x=605$

605 students are taking English Composition
635 students are taking English fundamentals

is my solution correct?

thanks!
 
Mathematics news on Phys.org
I would let $P$ be the number who passed and $F$ be the number who failed. We are given in the problem:

$$P+F=1240$$

$$P+30=F-30$$

Note that if we add 30 to those that passed, then we have to subtract 30 from those that failed. So solve this system...what do you find?
 
paulmdrdo said:
Every freshman student at a particular college is required to take an english aptitude exam. A student who passes the examination enrolls in english composition, and a student who fails the test must enroll in english fundamentals. In a freshman class of 1240 students there are more students enrolled in english fundamentals than in english composition. However, if 30 more students had passed the test, each course would have the same enrollment. how many students are taking each course?

My solution

let $x=$number of students who passed

$1240-x =$ number of students who failed

$x+30=1240-x$
This is incorrect. "If 30 more students had passed the test" then, yes, the number of students who passed and so must take one course is x+ 30 but then the number who failed, and must take the other course would be 30 less: 1240- (x+ 30)= 1210- x.

The equation you want to solve is x+ 30= 1210- x.
$2x=1240-30$
$2x=1210$
$x=605$

605 students are taking English Composition
635 students are taking English fundamentals

is my solution correct?

thanks!
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top