Work: Dot Product and Integral?

Click For Summary
SUMMARY

The discussion centers on the relationship between work, represented as both a dot product and an integral. The user presents a force vector <3,4> and a displacement vector <3,0>, calculating the dot product to yield 9J. However, confusion arises when attempting to calculate work using the area under the curve of a triangle formed by these vectors, incorrectly resulting in 6J. The correct approach emphasizes that work is defined as the integral of the force vector along the displacement, specifically W = ∫ F • ds, and highlights the importance of plotting the force component along the direction of displacement.

PREREQUISITES
  • Understanding of vector mathematics, specifically dot products
  • Familiarity with integral calculus and its application in physics
  • Knowledge of force and displacement vectors in a three-dimensional space
  • Ability to interpret graphical representations of mathematical functions
NEXT STEPS
  • Study the concept of work in physics, focusing on W = ∫ F • ds
  • Learn how to plot force components against displacement to visualize work done
  • Explore the implications of varying force on work calculations
  • Review examples of work done by constant versus variable forces
USEFUL FOR

Students of physics, educators teaching mechanics, and anyone interested in the mathematical foundations of work and energy concepts.

learning_physica
Messages
6
Reaction score
0
I’m having trouble understanding the relationship between how work is both a dot product and integral. I know that work equals F • D and also the integral of F(x): the area under the curve of F and D.

However, let’s say that I have a force vector <3,4> and a displacement vector of <3,0>. The dot product yields 9J.

However, if I took the area under the curve by treating the vector <3,4> as a line segment which has a magnitude of 5 and the displacement vector also as a line segment with magnitude 3, then the area under the curve of this triangle with side lengths 3, 4, and 5 give me an area of 6J.

Does anyone know what I’m doing wrong?
 
Physics news on Phys.org
You cannot use the hypotenuse as the displacement. If the force is ##\vec F = F_x~\hat x + F_y~\hat y +F_z~\hat z## and the displacement is ##\vec d =d_x~\hat x + d_y~\hat y +d_z~\hat z##, then the work done by this force is ##W=\vec F \cdot \vec d=F_xd_x+F_yd_y+F_zd_z##. There is no hypotenuse involved. When you have a force that depends on position, then the incremental work over a displacement ##d\vec s## is ##W=\vec F \cdot d\vec s=F_xdx+F_ydy+F_zdz## and you need to do 3 integrals to find the total work.

In the specific case that you posted, the work is just ##W=F_xx##. It turns out that ##F_x = F## only because the direction of the force has been chosen as the x-axis, but this does not mean that you can replace the displacement by its magnitude. You can do that only if both the force and the displacement are in the same direction.
 
The integral definition of work is a dot product. It is ##W = \int \vec F \cdot \vec{ds}##. If ##\vec F## is constant and the displacement is along a constant direction, then this becomes ##W = \vec F \cdot \int \vec {ds} = \vec F \cdot \vec D##

learning_physica said:
I’m having trouble understanding the relationship between how work is both a dot product and integral. I know that work equals F • D and also the integral of F(x): the area under the curve of F and D.
The integral is of the component of F along the path, which in this case is 3 N. So you're integrating a constant of 3 along ##ds## for 3 meters, which gives you 9 J.

learning_physica said:
However, let’s say that I have a force vector <3,4> and a displacement vector of <3,0>. The dot product yields 9J. However, if I took the area under the curve by treating the vector <3,4> as a line segment which has a magnitude of 5 and the displacement vector also as a line segment with magnitude 3, then the area under the curve of this triangle with side lengths 3, 4, and 5 give me an area of 6J.

Look, let's do it algebraically in terms of components.
$$W = \int \vec F \cdot \vec {ds} = \int \left( F_x i + F_y j \right) \cdot (i dx + j dy) = \int \left ( F_x dx + F_y dy \right ) \\
=\int F_x dx + \int F_y dy$$

F_x is a constant. Its plot vs x does not look like a triangle. F_y is a constant. Its plot vs y does not look like a triangle. You're confusing (x,y) space in some way with your plot of force vs distance.

For your example the first integral, the area under the curve for the x component, reduces to 3 * 3 = 9 J, and your second integral, the area under the curve for y, reduces to 0 * 4 = 0. Total 9 + 0 = 9 J.
 
  • Like
Likes Dale
Could someone then tell me what’s wrong with my diagram
 
Image1539127169.394696.jpg
 

Attachments

  • Image1539127169.394696.jpg
    Image1539127169.394696.jpg
    17.2 KB · Views: 703
learning_physica said:
Could someone then tell me what’s wrong with my diagram
Your diagram is wrong in that it shows that the force varies with distance when it actually does not. Furthermore, if you want the area under the curve to be the work done by the force, you should plot Fx vs. x, not F vs. D.
 
Then, what would be an appropriate diagram @kuruman
 
learning_physica said:
Then, what would be an appropriate diagram @kuruman
As I indicated in post #6, plot Fx vs. x. Find Fx at different values of x, put the appropriate points on the graph and connect the dots.
 

Similar threads

  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 33 ·
2
Replies
33
Views
4K
  • · Replies 8 ·
Replies
8
Views
700
  • · Replies 7 ·
Replies
7
Views
771
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 36 ·
2
Replies
36
Views
5K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
Replies
21
Views
3K
  • · Replies 12 ·
Replies
12
Views
2K