Work to move a point charge from infinity to the centre of a charge distribution

Click For Summary

Discussion Overview

The discussion revolves around the calculation of the work required to move a point charge from infinity to the center of a given charge distribution described by a specific density function. Participants explore the mathematical formulation of electrostatic potential and the integration process involved in the calculation, with a focus on the implications of using spherical coordinates and the correct interpretation of distance between charge elements.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant presents the electrostatic potential and the work required to move a charge, proposing an integral formulation based on the charge distribution.
  • Another participant questions the correctness of a specific term in the integral, suggesting it may be a typo and challenges the interpretation of the distance between charge elements.
  • A later reply agrees with the typo suggestion and elaborates on the integration limits and the correct form of the potential, while also questioning the assumptions made regarding the distance calculation.
  • Further clarification is sought regarding the interpretation of the unit vectors involved in the distance calculation, highlighting potential confusion over their definitions.
  • One participant expresses gratitude for the clarification received, indicating a shift in understanding regarding their earlier claims.

Areas of Agreement / Disagreement

Participants express disagreement on specific mathematical interpretations and formulations, particularly regarding the distance between charge elements and the integration process. No consensus is reached on the correct approach, and multiple viewpoints remain present throughout the discussion.

Contextual Notes

Participants note potential limitations in the assumptions made about the charge distribution and the interpretation of spherical coordinates, as well as the implications of using different unit vectors in the calculations.

LeoJakob
Messages
24
Reaction score
2
Electrostatic potential $$ \Phi(\vec{r})=k \int \mathrm{d}^{3} r \frac{\rho\left(\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|} (i) $$ with $$ k=\frac{1}{4\pi\epsilon_{0}} $$ in SI units.
What work is required to move a point charge q from infinity to the center of the through $$ \rho(\vec{r})=\rho_{0}\mathrm{e}^{-a r} (ii) $$ given charge distribution, where $$ a \text{ and } \rho_{0} $$ are constants? Work in Gaussian units.

To solve the problem I would use spherical coordiantes. The potential only depends on the radial difference between the charge q with position
$$\vec{r} = r\hat{e}_r \text{ and the location vector of the charge distribution element } \vec{r'} = r' \hat{e}_r \text{ such that }\\
\left|\vec{r}-\vec{r'}\right| = \sqrt{(r-r')^2}
$$

$$\text{Define } \Phi(\infty)=0 \text{ then the work is given by } W= q \Phi(\vec r)=q \Phi(r)$$

$$W= q\Phi(\vec{r})=k \int \mathrm{d}^{3} r' \frac{\rho\left(\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|}= \int \mathrm{d}^{3} r' \frac{\rho(r^{\prime})}{\sqrt{(r-r')^2}}=4\pi\int \limits_\infty^0 (r')^3 \frac{\rho(r^{\prime})}{\sqrt{(r-r')^2}}dr^{\prime}$$

The factor 4pi comes from the integration in spherical coordinates and k=1 in Gaussian units.

Is my approach right?
 
Physics news on Phys.org
I assume the 3 in $$4\pi\int \limits_\infty^0 (r')^3 \frac{\rho(r^{\prime})}{\sqrt{(r-r')^2}}dr^{\prime}$$is a typo ?

I don't agree with
LeoJakob said:
the potential only depends on the radial difference between the charge q with position

And certainly not with ##\left |\vec{r}-\vec{r}^{\prime}\right| = {\sqrt{(r-r')^2}}##

However -- fortunately -- you are only interested in ##\vec r=\vec 0##, so if you fill that in in ##(i)## you're allright.

##\ ##
 
  • Like
Likes   Reactions: LeoJakob
BvU said:
I assume the 3 in $$4\pi\int \limits_\infty^0 (r')^3 \frac{\rho(r^{\prime})}{\sqrt{(r-r')^2}}dr^{\prime}$$is a typo ?

I don't agree withAnd certainly not with ##\left |\vec{r}-\vec{r}^{\prime}\right| = {\sqrt{(r-r')^2}}##

However -- fortunately -- you are only interested in ##\vec r=\vec 0##, so if you fill that in in ##(i)## you're allright.

##\ ##
First of all: Thanks for taking the time to answer me :)

the 3 in $$4\pi\int \limits_\infty^0 (r')^3 \frac{\rho(r^{\prime})}{\sqrt{(r-r')^2}}dr^{\prime}$$is a typo because:

$$W= q\Phi(\vec{r})=k \int \mathrm{d}^{3} r' \frac{\rho\left(\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|}=\int \limits_{0}^{2 \pi} \int \limits_{0}^{\pi} \int \limits_{\infty}^{0} \frac{p\left(r^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|}(\sin \theta) \cdot\left(r^{\prime}\right)^{2} d r^{\prime} d \theta d \phi \\ =\int \limits_{0}^{2 \pi} d \phi \int \limits_{0}^{\pi} \sin \theta d \theta \int \limits_{\infty}^{0}\left(r^{\prime}\right)^{2} \frac{\rho \left(r^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|} d r^{\prime} =4\pi\int \limits_\infty^0 (r')^2 \frac{\rho(r^{\prime})}{\left|\vec{r}-\vec{r}^{\prime}\right|}dr^{\prime} \\ \Rightarrow $$

Would you agree with(?):

$$q\Phi(0)=4\pi\int \limits_\infty^0 (r')^2 \frac{\rho_{0}\mathrm{e}^{-a r^{\prime}})}{\left|\vec{r}^{\prime}\right|}dr^{\prime} $$

Why do you think the following is wrong?

$$\left|\vec{r}-\vec{r}^{\prime}\right|=\left|\left(r-r^{\prime}\right) \vec{e}_{r}\right|=\left|r-r^{\prime}\right| \cdot \underbrace{\| \vec{e}_{r}||}_{=1}=\sqrt{\left(r-r^{\prime}\right)^{2}} $$
 
LeoJakob said:
First of all:

Ah, and I forgot:
:welcome: ##\qquad ##!​

LeoJakob said:
Why do you think the following is wrong?$$\left|\vec{r}-\vec{r}^{\prime}\right|=\left|\left(r-r^{\prime}\right) \vec{e}_{r}\right|=\left|r-r^{\prime}\right| \cdot \underbrace{\| \vec{e}_{r}||}_{=1}=\sqrt{\left(r-r^{\prime}\right)^{2}}$$
Which ##\vec e_r## would that be ? The one from ##\vec r## or the one from ##\vec r'## ?

If ##|\vec r| = |\vec r'|## then ##|\vec r -\vec r'| =0 ## only if ##\theta=\theta'\ \&\ \phi=\phi'## !
1706223420229.png

The ##\hat e_r ## unit vector for ##\vec r -\vec r'## is not along ##\hat e_r## nor is it along ##\hat e_{r'}## !##\ ##
 
Last edited:
  • Like
Likes   Reactions: LeoJakob
Thanks for the welcome :) I now understand my mistake, thank you very much ! :)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
942
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K