Working mechanism of straws and siphon

  • Thread starter Thread starter sss1
  • Start date Start date
AI Thread Summary
A siphon operates by utilizing gravity and differential pressure, where the exit end is lower than the liquid source, allowing liquid to flow continuously once air is removed from the pipe. The process involves gravity pulling the liquid down, which maintains the differential pressure necessary for flow. In contrast, a straw relies on creating a temporary vacuum by sucking, which generates a pressure difference that allows liquid to rise. When sucking stops, the pressure difference is lost, halting the flow of liquid. Understanding these mechanisms clarifies the distinct functioning of siphons and straws.
sss1
Messages
50
Reaction score
2
Homework Statement
What's the difference in the working mechanism between a straw and a siphon? Why do you only need to suck on the siphon once for continuous flow of the liquid whereas if you stop sucking on a straw then liquid stops flowing?
Relevant Equations
NA
Is it because for a siphon since the end where the liquid exits is lower than the container level so when the pipe is sucked all the air in the pipe is gone and so liquid moves due to differential pressure, and gravity pulls the liquid down, removing the air in the pipe as the liquid comes down, so this differential pressure is maintained so the liquid just keeps flowing down? Whereas for a straw when you stop sucking on the straw there is no longer a differential pressure to keep the liquid flowing?
 
Last edited:
Physics news on Phys.org
Watch this video and answer your own question.

 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top