Working out Plane Structure via Powder X-ray Diffraction Multiplicand

Click For Summary
SUMMARY

The discussion focuses on analyzing Debye-Scherrer ring measurements obtained from Powder X-ray Diffraction to determine the crystal structure of a material. The measured ratios of the Debye rings were found to approximate the expected values for a Face-Centered Cubic (FCC) structure, specifically for the (111), (200), (220), and (311) planes. The key takeaway is that the ratio of the sine squared of the scattering angles corresponds to the integer values derived from the Miller indices, confirming the FCC structure. Participants emphasized the importance of accurately accounting for the angles in the calculations to ensure correct interpretations.

PREREQUISITES
  • Understanding of Powder X-ray Diffraction techniques
  • Familiarity with Debye-Scherrer ring analysis
  • Knowledge of Miller indices and crystal structures
  • Basic grasp of trigonometric functions in the context of scattering angles
NEXT STEPS
  • Research the mathematical relationship between Miller indices and Debye-Scherrer ring measurements
  • Learn about the significance of the FCC structure in material science
  • Explore advanced Powder X-ray Diffraction techniques for better accuracy
  • Investigate the impact of sample preparation on diffraction results
USEFUL FOR

Researchers, material scientists, and students involved in crystallography and solid-state physics who are analyzing crystal structures using Powder X-ray Diffraction techniques.

PandaKitten
Messages
11
Reaction score
1
Homework Statement
I need to work out the structure of NaCl using its Debye rings diameter and the equation below by working out its multiplicand and then assigning the appropriate plane structure to it.
Relevant Equations
(h^2+k^2+l^2)_min * (sin^2(theta_n))/(sin^2(theta_min)) = integer
Below is the measured values for the Debye rings I obtained. I have to multiply the ratio (which is (sin^2(theta_n))/(sin^2(theta_min))) by a multiplicand until I get an integer. However for the multiplicand and the values I measured I get 1, 3, 13, ??, 4, 8, ??. These should either correspond to a cubic structure (1,2,3,4,5...) a body centric structure (2,4,8,10..) or a face centric structure (3,4,8,11,12,16) but they don't correspond to any of them and also they should be in ascending size.
XRD.png
 
Physics news on Phys.org
Do you know what the distance to the screen is, so we can check your calculations?

It's important to be careful to note that the radius of the Debye-Scherrer ring corresponds to an angle of ##2\theta## (and likewise the diameter of the Debye-Scherrer ring corresponds to an angle of ##4 \theta##), if ##\theta## is the scattering angle. Did you take that into account?

Assuming you didn't make a mistake, the first four results at least are approximately in the ratio ##3:4:8:11## which is indeed what you'd expect from FCC, for the ##(111)##, ##(200)##, ##(220)## and ##(311)## planes respectively.
 
Last edited by a moderator:
etotheipi said:
Do you know what the distance to the screen is, so we can check your calculations?

It's important to be careful to note that the radius of the Debye-Scherrer ring corresponds to an angle of ##2\theta## (and likewise the diameter of the Debye-Scherrer ring corresponds to an angle of ##4 \theta##), if ##\theta## is the scattering angle. Did you take that into account?

Assuming you didn't make a mistake, the first four results at least are approximately in the ratio ##3:4:8:11## which is indeed what you'd expect from FCC, for the ##(111)##, ##(200)##, ##(220)## and ##(311)## planes respectively.
32.5mm
XRD2.png
 
Your work so far looks correct in that case. Here's what I think, denoting ##N:= h^2 + k^2 + l^2##:

1618683882871.png


It's quite possible that the (311) & (222) peaks, and similarly the (311) & (420) peaks, were so close together that they just appear as a single ring each.

Nonetheless, your results can definitely be matched onto the FCC structure!
 
Oh I see! I was given this equation that wasn't very well explained. So I assumed that the integer wasn't important and I should multiply them all by different multiplicands. But now I understand. Thank you so much.
XRD3.png
 
  • Like
Likes   Reactions: etotheipi
Yeah, the key is that ##\sin^2{(\theta)} / N## is a constant, so the ratio of the ##\sin^2{\theta}##'s of any two rows is the same as the ratio of the ##N = h^2 + k^2 + l^2##'s of those two rows.

So in that sense, your table is a little misleading, because all the multiplicands are of course the same - in this case ##3## - and this multiplication only serves to display the ratios as nice whole numbers. :smile:
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
6K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
5K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K