MHB Would the equation have at least one solution?

  • Thread starter Thread starter evinda
  • Start date Start date
AI Thread Summary
The discussion centers on proving that the diophantine equation y² = x³ + 7 has no solutions. It establishes that if (x₀, y₀) were a solution, x₀ must be odd, leading to contradictions when analyzing the equation modulo 4 and modulo 8. The analysis shows that y² + 1 cannot be divisible by any prime of the form 3 mod 4, which contradicts the conditions derived from the equation. The conclusion is that the equation cannot have any integer solutions, supported by multiple proofs and modular arithmetic reasoning. The overall consensus is that the equation y² = x³ + 7 has no solutions.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hi! (Cool)

In order to show that the diophantine equation $y^2=x^3+7$ has no solution, we do the following:

If the equation would have a solution, let $(x_0,y_0)$, $y_0^2=x_0^3+7$, then $x_0$ is odd.

$$y_0^2=x_0^3+7 \Rightarrow y_0^2+1=x_0^3+8=(x_0+2)(x_0^2-2x_0+4)=(x_0+2)[(x_0-1)^2+3]$$

$(x_0-1)^2+3 \in \mathbb{N} \text{ and } (x_0-1)^2+3>1$.

It stands that $(x_0-1)^2+3 \equiv 3 \pmod{4}$.

So, $(x_0-1)^2+3$ has at least one prime divisor of the form $p \equiv 3 \pmod 4$, so:

$$(x_0-1)^2+3 \equiv 0 \pmod p, \text{ where } p \equiv 3 \pmod 4$$

$$ \Rightarrow y_0^2+1 \equiv 0 \pmod p \Rightarrow y_0^2 \equiv -1 \pmod p$$

The equation $Y^2 \equiv -1 \pmod p$ has a solution $\Leftrightarrow \left( \frac{-1}{p} \right)=1 \Leftrightarrow p \equiv 1 \pmod 4$

Therefore:

$$y_0^2 \equiv -1 \pmod p \text{ has no solution}.$$If we would conclude from this relation: $ \left ( \frac{-1}{p} \right )=1$ that $p \equiv 3 \pmod 4$, would we conclude that the diophantine equation has at least one solution? (Thinking)
 
Mathematics news on Phys.org
That is not necessary, no. Even if $-1$ was a quadratic residue modulo $p$, the equation would have been only true modulo $p$. (For example, $2 = 5$ modulo $3$, but $2 \neq 5$ in general :p)
 
Last edited:
Not entirely on topic, but I'll add another proof I am familiar with.

Assume that $x$ is even. Then $x^3 = 0 \pmod{8}$. Thus $y^2 = x^3 + 7 = 7 = -1 \pmod{8}$, but this is impossible, hence $x$ is odd. Thus $x$ is either $1$ or $3$ modulo $4$.

$$y^2 + 1 = x^3 + 8 = (x + 2)(x^2 - 2x + 4)$$

$y^2 + 1$ is not divisible by any prime $3 \bmod 4$, thus the right hand side is also not divisible by any prime $3 \bmod 4$. In particular, $x + 2$ is not $3 \bmod 4$ (this is because any $3 \bmod 4$ integer must have at least one $3 \bmod 4$ prime factor) and thus is $1 \bmod 4$. Hence $x = 3 \mod 4$ in which case $x^2 - 2x + 4 = 9 - 6 + 4 = 7 = 3 \pmod{4}$ which implies there is a prime factor $p = 3 \pmod{4}$ dividing $x^2 - 2x + 4$, a contradiction $\blacksquare$
 
mathbalarka said:
Not entirely on topic, but I'll add another proof I am familiar with.

Assume that $x$ is even. Then $x^3 = 0 \pmod{8}$. Thus $y^2 = x^3 + 7 = 7 = -1 \pmod{8}$, but this is impossible, hence $x$ is odd. Thus $x$ is either $1$ or $3$ modulo $4$.

$$y^2 + 1 = x^3 + 8 = (x + 2)(x^2 - 2x + 4)$$

$y^2 + 1$ is not divisible by any prime $3 \bmod 4$, thus the right hand side is also not divisible by any prime $3 \bmod 4$. In particular, $x + 2$ is not $3 \bmod 4$ (this is because any $3 \bmod 4$ integer must have at least one $3 \bmod 4$ prime factor) and thus is $1 \bmod 4$. Hence $x = 3 \mod 4$ in which case $x^2 - 2x + 4 = 9 - 6 + 4 = 7 = 3 \pmod{4}$ which implies there is a prime factor $p = 3 \pmod{4}$ dividing $x^2 - 2x + 4$, a contradiction $\blacksquare$

We know that $x$ is odd, so it is of the form $2k+1$.

Therefore:

$$x+2=2k+1+2=2k+3$$

  • $k=2m+1: x+2=2(2m+1)+3=4m+5 \equiv 1 \pmod 4 \Rightarrow x \equiv 3 \pmod 4$
  • $ k=2m: x+2=4m+3 \equiv 3 \pmod 4 \Rightarrow x \equiv 1 \pmod 4$

How do we conclude that $x \equiv 3 \pmod 4$ ? (Thinking)
 
evinda said:
How do we conclude that $x \equiv 3 \pmod 4$ ?(Thinking)

Right, so you have (correctly (Yes)) concluded that $x$ is either $1$ or $3$ modulo $4$.

Now, assume $x = 1 \pmod 4$. Then $x + 2 = 3 \pmod 4$. In that case, $y^2 + 1$ is divisible by some number $3 \pmod 4$. The fact I have used for contradiction is

Claim : Any integer of the form $a^2 + b^2$ is not divisible by any integer $n$ of the form 3 mod 4.

Can you try to prove this claim?
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top