MHB Write function to model combined rate

AI Thread Summary
The assignment involves modeling the combined rate of two pipes filling a swimming pool, where Pipe A takes 20 hours longer than Pipe B. The combined rate of both pipes filling the pool in 30 hours leads to the equation 1/x + 1/(x+20) = 1/30. The function R(x) that models this combined rate is given as f(x) = 1/x + 1/(x+20). To complete the assignment, the next step is to graph this function. Understanding the relationship between the rates of the two pipes is crucial for solving the problem.
calbeach900
Messages
1
Reaction score
0
The assignment states:
Pipe A takes 20 hours longer to fill swimming pool than pipe B. Together, pipe A and pipe B can fill the swimming pool in 30 hours.

The assignment question I am stuck on is to write a function R(x) that models the combined rate of the two pipes in relation to the time it takes for pipe B to do it by itself. After I have come up with the R(x) function, I will need to graph that function for my assignment.

I already know how to solve for the individual times for each pipe where:
1/job 1 + 1/job 2 = 1/total
time to fill with Pipe B = x
time to fill Pipe A = x+20
1/x + 1/(x+20) = 1/30
Solving for x will give me the rates of the individual pipes.

The assignment question I am stuck on is I can't figure out how to write the function R(x) that models the combined rate of the two pipes in relation to the time it takes for pipe B to do it by itself.
 
Mathematics news on Phys.org
You have already done that! In what you have written you have taken x to BE the time it takes for pipe B to to fill the tank by itself so writing "in relation to the time it takes for pipe B to do it by itself" means just writing a function in terms of x. And you said that the combined rates is1/x+ 1/(x+ 20). Your function is f(x)=1/x+ 1/(x+20)
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Replies
10
Views
2K
Replies
2
Views
6K
Replies
14
Views
2K
Replies
31
Views
2K
Replies
7
Views
1K
Replies
3
Views
2K
Replies
1
Views
2K
Replies
4
Views
1K
Back
Top