Y''(x) + A sin(y(x)) - B = 0; A,B : positive, real

  • Thread starter Thread starter tarquinius
  • Start date Start date
  • Tags Tags
    Positive
tarquinius
Messages
11
Reaction score
0
Hello there,

I have no idea how to solve the differential equation

y''(x) + A sin(y(x)) - B = 0 ,

where A and B are positive real numbers. I do also have initial conditions: y(0) = 0 and y'(0) = 0.

I would be grateful for any help.
 
Physics news on Phys.org
y''+A sin(y)-B=0
y''y'+A sin(y)y'-B y'=0
y'²/2-A cos(y)-B y =C
y'²=2A cos(y)+2B y +2C
dy/dx =y' = (+or-)sqrt(2A cos(y)+2B y+2C)
dx=(+or-) dy/sqrt(2A cos(y)+2B y+2C)
x =(+or-) integal (dy/sqrt(2A cos(y)+2B y+2C)) +c
cannot be expressed with a finit number of usual functions;
 
Thank you very much.
 
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...
Back
Top